Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1972, Qupperneq 48

Jökull - 01.12.1972, Qupperneq 48
where Ly is the latent specific evaporation heat m' is the fluctuation of the specific hu- miclity The eddy-flux density of vapor is given by e=“l (?) Lv Phase changes are assumed only to take place on the surface and tlie vertical divergence in the radiation fluxes is neglected. Under the assumption of homogeneous uni- formity and stationarity in the Prancftl layer these three fluxes are constant with the height (Calder 1966). The fluxes could therefore be measured clirectly in an arbitrary height in the Prandtl layer, but as this requires very com- plicated instruments one prefers to express the fluxes as functions of the vertical mean gradient fields which are less difficult to measure. The procedure is based on the similarity theory and tlie semiempirical theory of turbulence. The fluxes can then be written as lim u (z) = 0 (11) lim T (z) = : 0 °C (12) lim e (z) = 6.11 mb (18) Z—> z"o where zo, z'o ancl z"o are the integration con- stants for the wind—, air temperature—, and the vapor pressure profile respectively. The greatest difficulty in solving the system of equations (8), (9) and (10) is involved in obtaining the diffusivity coefficients KM, KH, Kw expressed with the mean fields of wind, air temperature and humidity. No complete theory exists. In the glaciological literature some authors have contributed with semi- empirical solutions (Sverdrup 1936, Wallén 1948, Hoi.nkes and Untersteiner 1952). In the present paper a solution based on the Monin and Obukhov (1954) similarity theory is ap- pliecl. According to this theory the three co- efficients can be written du T = p dz = p Ux“ (8) Hd = p kh / dT g \ (dT + v) (9) p ux Tx L„ K„ dm dz p ux mx (10) where usual symbol convention is adopted. All variables are averages but the bar has been dropped for convenience in printing. The left side of the equation can be considered as a definition of the turbulent eddy diffusivity co- efficients, KM, KH and Kw. The right hand result is a result of the Monin and Obukhov (1954) theory. The scaling parameters ux, Tx and mx for respectively wind velocity, air temperature and the specific humidity are con- stants in the Prandtl layer. Following the mete- orological convention the fluxes are defined positive if directed upwards. For a melting glacier equations (8), (9), (10) are solved with the boundary conditions km = K Ux Z cpM KH = K UX Z <Ph Kv K ux Z (14) cpw where q>M, cpn an<i cpw are functions of the stability parameter z/L. The Monin-Obukhov scaling length is given as L = T0 uxz K Tx (!5) where g is the acceleration of gravity ancl To (constant) is the mean potential temperature in the Prandtl layer. By assuming that the mechanism of the eddy transfer of momentum, sensible and latent lieat is of such nature that Ku = K„ (16) the problem is further simplified. Then the three coefficients and the mean profiles for wincl speed, air temperature and humidity can 46 JÖKULL 22. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.