Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 42

Jökull - 01.12.1973, Qupperneq 42
represent a set of m linear equations with n unknowns. The coefficients aik are assumed to be real. In the following it is convenient to assume that the equations have been normalized such that the h-norm of the row-vectors is unity, viz. If jrj| zjí= 1 this can always be achieved by dividing each equation by jr±J. The underdeter- mined, well posed and overdetermined cases are then characterized by m < n, m = n, and m > n respectively. It is also convenient to rewrite (8) in vector-matrix language. Let x be the un- known n-vector (xk), b the given m-vector (bj), and A = (alk) be the m x n matrix of the en- tries aik where i = 1, 2,. . ., m, and k=l,2, . . ., n. The system (8) can then be written Ax = b (10) Let A' be the n x m transpose or adjoint of A and x • y denote the scalar product of two vectors x and y. The adjoint satisfies the identity x • Ay = A'x • y (11) for any m-vector x and n-vector y. The product matrix AA' is m x m and A'A is n x n. These two matrices are symmetric. In the following we will assume that our basic matrix A is such that both AA' and A'A are non-singular and hence invertible. The identity (11) shows that the range of A' is orthogonal to the null-space of A and vice versa. Hence, any solution of the homogeneous equations (10) has to be ortho- gonal to the range of the adjoint A'. The underdetermined case Let equations (10) represent an underdeter- mined case where m < n. Adopting the solu- tion method indicated by equations (2) and (3) above, we will assume that the solution n- vectors of (10) can be represented x = x0 + s (12) 40 JÖKULL 23. ÁR where x0 is the least 12-norm vector satisfying (10) and the vector s lies wholly within the null-space N of A, viz. As = 0 (13) for any s in N. The decomposition (12) prc- supposes the orthogonality of x0 and s, which will be verified below, and hence, |X|2=|X0|2+ |S|2 (14) The vector x0 is consequently to be found as the solution of the following minimum pro- blem [x|2 = min. (15) for all x which satisfy equations (10). This problem is solved by a standard variational technique, that is, we minimize the following expression M = |x|2 + 2a • (b — Ax) (16) where a is the Lagrange m-vector multiplier which is to be determined. The factor 2 in equation (16) is introduced for convenience. Let <3x be an arbitrary small n-vector and c a scalar. The vector gx is introduced into (16) as the variation of x, that is, we replace x in (16) by x + c ðx and minimize M with respect to c at c = 0, viz. = 2x-8x-2a-A8x = 0 (17) c = 0 The second term on the right of (17) can be written with the help of the adjoint A' a-A8x = A'a-8x (18) and hence (17) can be rewritten (x — A' a) • 8x = 0 (19) This equation has to hold for an arbitrary 8x, viz. our solution x0 = A' a 3M 9c (20)
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.