Náttúrufræðingurinn

Ukioqatigiit
Ataaseq assigiiaat ilaat

Náttúrufræðingurinn - 2013, Qupperneq 85

Náttúrufræðingurinn - 2013, Qupperneq 85
85 Tímarit Hins íslenska náttúrufræðifélags Á þessu stigi liggur ekki fyrir hvort raunhæft sé að nota hitakæra stofna til að framleiða etanól úr íslenskum lífmassa. Framleiðsla á etanóli á stórum skala á nú undir högg að sækja vegna kostnaðar og samkeppni við verð á jarðefna- eldsneyti og etanóli úr einfaldara hráefni. Í Bandaríkjunum er t.d. etanólframleiðsla úr mun einfaldari lífmassa (sterkju) enn niðurgreidd af ríkinu. Skoða þyrfti þetta í stærra samhengi, m.a. með skuldbind- ing um Íslands hvað varðar framleiðslu á lífrænu elds neyti og markmiði og reglugerðum Evrópu- bandalagsins hvað varðar aukið hlutfall lífeldsneytis í fram tíðinni. Á móti kemur, að ef etanól yrði framleitt hér á landi myndi það leiða til minni innflutnings á jarð- efnaeldneyti og sparnaði í gjaldeyri. Allt þetta þyrfti að taka með í reikn- inginn til að gera fullkomlega grein fyrir möguleikum á slíkri fram- leiðslu á Íslandi. Summary Production of ethanol from complex biomass with thermo- philic bacteria This review focuses upon ethanol pro- duction by microbial ferment at ions with the main emphasis on thermo- philic bacteria. Production of biofuels in general has gained increas ed interest in recent years, mainly due to the sub- stantial increase in the use of fossil fuels. This has led to elevated concentrat ion of carbon dioxide in the atmos phere and is considered to be the main cause of increasing tempera tures on Earth. Ethanol is one type of biofuel that can be produced by fermentation and its production has increased hugely in the last decade. The largest part of this in- crease derives from simple substrates (sugar and starch based biomass) which are in direct competition with the food and feed industry. Therefore, increased interest towards the utiliza- tion of more complex biomass, lignocel- lulose has arisen. Fermentation path- ways used by both bacteria and yeast will be focused upon with the main em- phasis on thermophilic bacteria, mainly isolated from Icelandic hot springs. Yields of ethanol, both from simple sugars as well as ligno cellulosic hydro- lysates will be focus ed upon. The main genera of thermophilic bacteria (Clostridium, Thermoanaerobacter, Thermo- anaero bacterium) are described and the pros and cons of using these bacteria for bioethanol production are dis- cussed. Finally, the possibility of using such microbes for bioethanol produc- tion from Icelandic biomass will be de- bated. Heimildir 1. Renewable Fuels Association 2010. Ethanol industry statistics: annual world ethanol production by country. Washington. Available from: http://www.ethanolrfa.org/pages/statistics/#E 2. Sanchez, O.J. & Cardona, C.A. 2008. Trends in biotechnological produc- tion of fuel ethanol from different feedstocks. Bioresource Technology 13. 5270–95. 3. Moisier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. & Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96. 673–686. 4. Olsson, L. & Hahn-Hagerdahl, B. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Micorbial Technology 18. 312–331. 5. Liu, S.Y, Rainey., F.A., Morgan., H.W., Mayer, F. & Wiegel, J. 1996. Ther- moanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. International Journal of Systematic Bacteriology 46. 388–396. 6. Ahring, B.K., Licht, D., Schmidt, A.S. & Sommer, P. 1999. Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii. Bioresource Technology 68. 3–9. 7. Taylor, M.P., Eley, K.L., Martin, S., Tuffin, M.I., Burton, S.G. & Cowan, D.A. 2009. Thermophilic etahnologenesis: future prospects for second- generation bioethanol production. Trends in Biotechnology. 27. 398–405. 8. Sanchez, R.G., Karhumaa, K., Fonseca, C., Nogue, V.S., Almeida, F.R.M., Larsson, C.U., Bengtsson, O., Bettinga, M., Hahn-Hagerdal, B. & Gor- wa-Grauslund, M.F. 2010. Improved xylose and arabinose utilization by an industrially recombinant Saccharomyces cerevisae strain using evolu- tionary engineering. Biotechnology for Biofuels 3. 1–11. doi: 10.1186/1754-6834-3-13 9. Wiegel, J. & Ljungdahl, L.G. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Archives of Microbiology 128. 343–348. 10. Koskinen, P.E.P., Beck, S.R.B., Jóhann Örlygsson & Puhakka, J.A. 2008. Ethanol and hydrogen production by two thermophilic, anaerobic bacte- ria isolated from Icelandic geothermal areas. Biotechnology and Bioengi- neering 101. 679–690. 11. Georgieva, T.I., Mikkelsen, M.J. & Ahring, B.A. 2008. High etahanol toler- ance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Central European Journal of Biology 2. 364–377. 12. Arnheiður Rán Almarsdóttir, Ingólfur Bragi Gunnarsson, Tarazewicz, A. & Jóhann Örlygsson. 2010. Hydrogen production from sugars and com- plex biomass by Clostridium species, AK14, isolated from Icelandic hot spring. Icelandic Agricultural Sciences 23. 61–71. 13. Arnheiður Rán Almarsdóttir, Margrét Auður Sigurbjörnsdóttir & Jóhann Örlygsson 2012. Effect of various factors on ethanol yields from ligno- cellulosic biomass by Thermoanaerobacterium AK17. Biotechnology and Bioengineering 109. 686–694. 14. Jóhann Örlygsson, Margrét Auður Sigurbjörnsdóttir & Hilma Eiðsdóttir Bakken 2010. Bioprospecting thermophilic ethanol and hydrogen producing bacteria from Icelandic hot springs. Icelandic Agricultural Sciences 23. 75–87. 15. Ben-Bassat, A., Lamed, R. & Zeikus, J.G. 1981. Ethanol-production by thermophilic bacteria – metabolic control of end product formation in Thermoanaerobium brockii. Journal of Bacteriology 146. 192–199. 16. Lamed, R., Su, T.M. & Brennan, M.J. 1980. Effect of stirring on ethanol- production by Clostridium thermocellum. Abstracts of Papers of the American Chemical Society, 180 (AUG), 44-MICR. 17. Fardeau, M.L., Faudon, C., Cayol, J.L., Magot, M., Patel, B.K.C. & Ollivier, B. 1996. Effect of thiosulphate as electron acceptor on glucose and xylose oxidation by Thermoanaerobacter finnii and a Thermoanaerobacter sp. isolated from oil field water. Research in Microbiology 147. 159–165. 18. Lovitt, R.W., Longin, R. & Zeikus, J.G. 1984. Ethanol production by ther- mophilic bacteria: physiological comparison of solvent effects on parent and alcohol-tolerant strains of Clostridium thermohydrosulfuricum. Applied and Environmental Microbiology 48. 171–177. 19. Larsen, L., Nielsen, P. & Ahring, B.K. 1997. Thermoanaerobacter mathranii sp nov, an ethanol-producing, extremely thermophilic anaerobic bacte- rium from a hot spring in Iceland. Archives of Microbiology 168. 114–119. 20. Wiegel, J. & Lungdahl, L.G. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new extreme thermophilic, anaerobic bacterium. Archives of Microbiology 128. 343–348. 21. Gu, Y., Yu, J., Hui, W., Xudong, L., Zhilin, L., Jian, L., Han, X., Zhaobing, S., Hongjun, D., Yunliu, Y., Yin, L., Weihong, J. & Sheng, Y. 2012. Eco- monical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnology Journal 6. 1348–1357. 22. Lin, C-W., Wu, C-H., Tran, D-T., Shih, M-C., Li, W-H. & Wu, C-F. 2010. Mixed culture fermentation from lignocellulosic materials using thermo- philic lignocellulose-degrading anaerobes. Process Biochemistry 46. 489–493. 23. Demain, A.L., Newcomb, M. & Wu, J.H. 2005. Cellulase, Clostridia, and Ethanol. Microbiology and molecular biology reviews 69. 124–154. 24. Lee, Y.E., Jain, M.K., Lee, C.Y., Lowe, S.E. & Zeikus, J.G. 1993. Taxonomic distinction of saccharolytic thermophilic anaerobes – description of Thermoanaerobacterium xylanolyticum gen-nov, sp-nov, and Thermoan- aerobacterium saccharolyticum gen-nov, sp-nov – reclassification of Ther- moanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb-nov, Thermoanaerobacterium thermosulfurigenes comb-nov, and Thermoanaero-
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108

x

Náttúrufræðingurinn

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Náttúrufræðingurinn
https://timarit.is/publication/337

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.