Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 63

Jökull - 01.01.2010, Qupperneq 63
Upptyppingar seismic swarms of 100 m (Rubin and Gillard, 1998). Also, the two standard-deviation uncertainties in our relative reloca- tions average to approximately 60 m. The RMS misfit to our best-fit plane (i.e., 114 m) is greater than the location uncertainty and earthquake rupture diameter; hence, the distribution of our hypocentral locations is amenable to some brittle fracture directly adjacent to the dyke, perhaps representing the ambient stress field that is near to failure. However, we do not ob- serve widespread brittle deformation away from the dyke. Additional improvements to the analysis pro- cedure and station configuration consistently reveal tighter clustering about the plane. We interpret this as evidence for minimal and localised brittle defor- mation surrounding the active dyke plane. The tight spatial clustering revealed by the ASN locations also indicates that the seismicity progressed along the same dip throughout the study period. This is consistent with recent theoretical and experimen- tal models of Maccaferri et al. (2010) that suggest it is energetically favourable for a dyke to continue to propagate along the same dip in a homogeneous, visco-elastic medium. A detailed discussion of focal mechanisms is be- yond the scope of this paper; however, we note that the 288 events consist of both reverse and normal fault- ing in an approximately 3:1 ratio. Moreover, an over- whelming majority of the events have inferred fault planes that are in alignment with the plane of the dyke (White et al., 2011). Although the Upptyppingar seismicity’s tilted ori- entation, manifestation in the ductile zone of the crust, and concomitant dominance of high-frequency im- pulsive P-wave arrivals is unusual, the Lake Tahoe seismicity exhibited similar anomalous characteristics (Smith et al., 2004). Linear regression models fit the seismicity beneath Lake Tahoe to a single planar structure dipping at 50◦ in visco-elastic crust. Additional information regarding the presence of melt may also be obtained from the ratio of P-wave velocity to S-wave velocity (VP /VS), since the nature of the host material controls wave propagation rates. VP /VS ratios are derived independently for each of the 288 events using Wadati diagrams (Wadati, 1933) and PPICK-determined arrival times. Wadati diagrams display the time difference between the S-wave and P-wave arrivals against the arrival time of the P-wave for each station. For any given event, the slope of the best-fit line to the plotted station data represents the ratio of the P-wave to S-wave velocity minus one (i.e., VP /VS –1). As depicted in Figure 13, two statistically sig- nificant populations emerge from the distribution of VP /VS ratios with hypocentral depth: one at <15.25 km depth with a mean VP /VS ratio of 1.78±0.02 (2σ) and another at 15.25–18.40 km depth with a mean VP /VS ratio of 1.80±0.03. Here, statistically signif- icant refers to a rejection of the null hypothesis that the two populations are independent random sam- ples from normal distributions with equal means but not necessarily equal variances at the 1% significance level, determined through a two-tailed t-test. Waves produced by earthquakes at 15.25–18.40 km depth must pass through the overlying region of lower VP /VS ; hence, it is possible to approximate the local VP /VS ratio of the deeper region. Assuming a two-layer model, with the average VP /VS ratio of the upper layer shallower than 15.25 km being 1.78 and a wave source at the centroid of the deeper cluster (∼16.3 km), we estimate the local VP /VS ratio of the deeper region to be ∼2.09. This is higher than that expected or measured for typical, solid high magne- sian gabbroic rocks at mid-depth in the Icelandic crust (Christensen, 1996; Allen et al., 2002; Bjarnason and Schmeling, 2009; Eccles et al., 2009); hence, it is con- sistent with the presence of melt. SUMMARY AND CONCLUSIONS We have presented a test case that demonstrates the benefits of a dense, local seismic network for resolv- ing fine morphological details within compact seismic swarms. However, we also show that high quality re- gional networks, such as the SIL system in Iceland, are more than sufficient for most interpretational re- quirements. Furthermore, we conclude that the net- work size and configuration dominate over the picking of phase arrivals in determining location accuracy and precision. This assumes, of course, that a reasonable effort has been made in picking phase arrivals. The IMO procedures as well as the techniques presented JÖKULL No. 60 63
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.