Fjölrit RALA - 15.06.2004, Side 19

Fjölrit RALA - 15.06.2004, Side 19
Volcanic soils: an overview and new perspectives Randy A. Dahlgren1, Masami Nanzyo2 and Masahiko Saigusa2 1 University of Califomia - Davis, USA; 2Tohoku University - Sendai, Japan Volcanoes are revered and feared for their awesome and devastating emptions that obliterate terrestrial ecosystems, and often cause tremendous casualties to humans and wildlife. Yet from these ashes of devastation arise some of the most productive soils in the world with the capacity to sustain high human population densities. Soils formed in volcanic ejecta have many distinctive physical, chemical and mineralogical properties that are rarely found in soils derived from other parent materials. These distinctive properties are largely attributable to the formation of noncrystalline materials (e.g., allophane, imogolite, ferrihydrite) containing variable charge surfaces, and the accumulation of organic matter. The nature and properties of volcanic soils have been intensively studied, yet the unifying principles conceming their genesis, mineralogy, biological properties and agronomic utilization have not been fully estabhshed. The bulk of previous research has focused on volcanic soils formed in the humid-temperate environment. In contrast, there is a paucity of information regarding volcanic soils formed in tropical, arid and cold regions. There is a strong need for a comprehensive global analysis of existing data to establish thresholds in soil genesis (especially between competing soil groups) and mineralogical transformations. Transitions between allophanic and nonallophanic Andosols are not fully understood, nor are transitions between dominance by noncrystalline (e.g., allophone, imogolite, ferrihydrite) versus crystalline (e.g., halloysite, 1:1- 2:1 mixed layer clays) mineralogical assemblages. A key to establishing threshold conditions is to understand processes regulating aqueous aluminum and silica activities and kinetic factors regulating aqueous-solid phase interactions. There are numerous opportunities to apply our knowledge of volcanic soils to important environmental issues. Unique properties of volcanic soils, such as high anion exchange capacity, provide opportunity for attenuating nitrate leaching in agricultural systems and potential for utilization in low-level radioactive waste disposal sites to retain radioactive anions (e.g., iodine, technetium). Similarly, the abundance of noncrystalline materials and organic matter provides a high capacity to retain heavy metals, trace elements (cations and anions) and organic compounds making volcanic soils a good candidate for disposal of biosolids. Volcanism plays an important role in the global carbon cycle, representing a primary source and sink for carbon. Soils formed in volcanic materials contain the largest accumulations of organic carbon among the mineral soil orders. Understanding the mechanisms by which organic matter is preserved in these soils may contribute to management techniques to sequester carbon as soil organic matter. Given our understanding of the nature and properties of volcanic soils, there is an opportunity to apply this knowledge to agronomic management practices that provide for sustainable production of food, fiber and forage. Within the concept of sustainable management, there is a lack of knowledge conceming the interaction of biological processes with chemical and physical soil properties of Andosols. The differences in the agricultural productivity among Andosols are largely attributed to the colloidal composition in the rooting zone, namely allophanic versus nonallophanic. Nitrogen and phosphoms cycling, aluminum toxicity, acidity amelioration, mycorrhizae interactions and protection from soil pathogens require additional research in terms of their role in soil quality and sustainable management practices. Phosphorus is often a growth-limiting nutrient for agricultural production in volcanic soils. In young volcanic soils, apatite plays an important role in providing phosphorus for revegetation and crop production without addition of phosphoms fertilizers. Under low phosphoms availability, inoculation with mycorrhizae fungi greatly enhances 8
Side 1
Side 2
Side 3
Side 4
Side 5
Side 6
Side 7
Side 8
Side 9
Side 10
Side 11
Side 12
Side 13
Side 14
Side 15
Side 16
Side 17
Side 18
Side 19
Side 20
Side 21
Side 22
Side 23
Side 24
Side 25
Side 26
Side 27
Side 28
Side 29
Side 30
Side 31
Side 32
Side 33
Side 34
Side 35
Side 36
Side 37
Side 38
Side 39
Side 40
Side 41
Side 42
Side 43
Side 44
Side 45
Side 46
Side 47
Side 48
Side 49
Side 50
Side 51
Side 52
Side 53
Side 54
Side 55
Side 56
Side 57
Side 58
Side 59
Side 60
Side 61
Side 62
Side 63
Side 64
Side 65
Side 66
Side 67
Side 68
Side 69
Side 70
Side 71
Side 72
Side 73
Side 74
Side 75
Side 76
Side 77
Side 78
Side 79
Side 80
Side 81
Side 82
Side 83
Side 84
Side 85
Side 86
Side 87
Side 88
Side 89
Side 90
Side 91
Side 92
Side 93
Side 94
Side 95
Side 96
Side 97
Side 98
Side 99
Side 100
Side 101
Side 102
Side 103
Side 104
Side 105
Side 106
Side 107
Side 108
Side 109
Side 110
Side 111
Side 112
Side 113
Side 114
Side 115
Side 116
Side 117
Side 118
Side 119
Side 120
Side 121
Side 122
Side 123
Side 124
Side 125
Side 126
Side 127
Side 128
Side 129
Side 130
Side 131
Side 132
Side 133
Side 134
Side 135
Side 136
Side 137
Side 138
Side 139
Side 140
Side 141
Side 142
Side 143
Side 144
Side 145
Side 146
Side 147
Side 148
Side 149
Side 150
Side 151
Side 152
Side 153
Side 154
Side 155
Side 156
Side 157
Side 158
Side 159
Side 160

x

Fjölrit RALA

Direkte link

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Fjölrit RALA
https://timarit.is/publication/1497

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.