Fjölrit RALA - 15.06.2004, Qupperneq 69

Fjölrit RALA - 15.06.2004, Qupperneq 69
Physical and chemical study on irreversible changes of water retention properties in an Azores Andisol. C. Fernandez, F. van Oort and I. Lamy INRA, Unité de Science du Sol, RD-10, 78026 Versailles, France Introduction Andisols are widely used for agronomic land-use in many parts of the world. However, they are highly responsive to farming practices that do not sufficiently take into account their specific physical and physico-chemical properties, in particular irreversible drying effects. These effects have been for a long time attributed to a rearrangement of pore space (Maeda & Warkentin, 1975) due to a micro-aggregation of elementary allophane particles (Kubota, 1972). On the other hand, Wada (1989) mentioned that negative charges could develop during desiccation related to changes in coordination of some surface A1 atoms. In order to identify mechanisms goveming irreversible drying effects of allophanic material, we studied both soil water retention and surface charge characteristics on samples of an andisol with exceptional model physical properties. Material & Methods Samples of a deep, 7-Snd horizon in an andisol located at the Azores Islands (Lagoa do Caiado, Pico Island) were selected during the 2001 Cost 622 meeting. The soil was slightly acid (pHwater 6.2), highly weathered, containing 24% allophane. It displayed a complete isotropic character under optical polarising light. Physical study showed an extreme low bulk density (0.18 Mg/m3) and a high water content (> 450%). Soil water retention was measured during desiccation and rehydratation of centimetre-sized samples, initially equilibrated at various water potentials. On the same samples, we determined the Zero Point of Charge (ZPC) and total variable charges by NaOH - HCIO4 titration, with different ionic strenght. Results & Discussion During desiccation, the total water content decreased from 450 to 20% (air-dried), and normal shrinkage was observed (Fig. 1) until drying to < 32.5 h.r. (< -150 Mpa). These results indicated an absence of soil structure at a mm and pm scale in the studied soil material. Rewetting experiments showed that notable loss of hydration capacity occurred for water potentials > -320 kPa and < -33 MPa. For lower water potentials (-33 to - 234 MPa) only 7% of the initial water content was reached (30g/100g soil). ZPC values strongly varied with the state of drying of the samples. Calculated surface charges at different water potentials revealed two distinct domains: > - 320 kPa and < - lMpa. The soil's rehydration capacity after drying and the amounts of total negative surface charges were strongly correlated (Fig. 2). Conclusions This combined physical and chemical study suggested a two-step mechanism for irreversible changes of water retention properties in andisols. On drying of a field moist sample, the first step was mainly chemical and corresponded to coalescence of elementary allophane particles resulting from water extraction with reduction of surface charges together with a slight increase of bulk density. At higher water potentials, a second step was a mainly physical: consolidation of the material with a strong increasing bulk density. Only minor losses of surface charges were observed due to some interaction of chains of allophane particles. For the studied model material, our findings highlighted a distinct threshold of irreversibility of physico-chemical properties for water potential of approximately -500 kPa. 51
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160

x

Fjölrit RALA

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Fjölrit RALA
https://timarit.is/publication/1497

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.