Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1983, Qupperneq 59

Jökull - 01.12.1983, Qupperneq 59
Lava Flows and Forms GUNNAR BÖÐVARSSON School of Oceanography, Oregon State University, Corvallis, OR 97331, U. S. A. ABSTRACT Assuming that many lavas behave as very thin flows of a Newtonean viscous liquid, one can derive a non- linear partial differential equation of the parabolic type that govems the shape of the surface of such flows. Although the boundary condition at thefront of the lavas still presents an unresolved problem, the resulting equation can be applied to estimating the viscosity offlowing lavas. INTRODUCTION The mechanism of lava flow is of both geoscien- tific and direct practical interest. Basaltic layers and other extrusions comprise a prominent part of exposed igneous rock and the study of the mechan- ism of formation of these structures is therefore im- portant from the geological point of view. Lava flows have also interfered with human affairs and have occasionally caused damage to property. We have only to recall the destruction due to the eruption on Heimaey in Iceland in 1973. Walker (1973) correctly emphasizes the real social need to be able to predict the behavior of lava flows advancing on populated areas. Any attempts at gaining a better understanding of the mechanism of lava flow will have to commence with the collection of physical data and with the development of relevant flow models. The present paper has been written for the purpose of presenting an elementary flow model which may be of some interest in the present context. SOME CHARACTERISTICS OF LAVA FLOWS A considerable number of geological and physical data mainly on historical lava extrusions are given by Walker (1973) where the factors that affect the ultimate length of lava flows are discussed at length. The author notes that while some low- viscosity lava flows have reached lengths of 100 to 200 km their thickness varies only between 2 and 30 meters. Length/thickness ratios may thus amount to as much as 10,000 and such extrusions behave as truly thin-sheet flows. According to Hooper (1982), some of the Columbia River basalt flows have reached lengths in excess of 500 km with an average thickness of only 30 m. Very briefly, some of the main characteristics of such lava flow-sheets can be listed as follows. (1) Even relatively fluid lavas with viscosities in the range 103 to 10® Pas advance at a slow rate (Walker, 1973). Velocities range from meters to kilo- meters per day. The mode of such flow is obviously that of viscous creep where inertia forces can be neglected. (2) The rheological properties of lavas are apparently complex and only poorly known. According to Hulme (1974) there are indications that magmas may behave as Bingham liquids, that is, possess a yield strength. At stresses above the Bingham limit, magmas probably behave as New- tonean liquids, but the viscosity is highly tempera- ture dependent. Moreover, the temperature and chemistry of lavas may vary along the flow due to chemical reactions and outgassing. (3) As a consequence of the temperature dependent viscosity, the heat balance of lavas is of great importance for the rheology. In particular, it is to be noted that lavas generally form a solid crust and a solid bottom layer that reduce the eflective height of the liquid section. (4) Lava flows have a free surface and their motion is therefore subject to a non-linear surface condition. (5) The mechanical processes in the fronts of lava flows diífer from the situation in the liquid interior. The solidified crust piles up at the front and forms a type of barrier or wall that has to be partially pushed ahead of the flow or under the advancing lava. This condition remains to be quantified. JÖKULL 33. ÁR 57
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.