Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1983, Qupperneq 61

Jökull - 01.12.1983, Qupperneq 61
I^XXU| [ðyyU|«|ðzzUj (7) |8xxV| = |ðyyV|«|8ZZV| Let u(S) = (u,v) now be the horizontal velocity vector and — V| the 2-dimensional Laplacian. The viscous term on the right of (1) then takes the form fl = (g/2v) (z-f) (z+f—2h) V2h (13) Equation (3) can now be used to eliminate the 2-dimensional velocity u(S). We integrate (3) with respect to z from z = f to z = h and apply the boundary conditions V2fl = (ðzzu, 8zzv). (8) (d) As a further consequence of the thin layer creep, the vertical viscous forces can be neglected as compared with the gravitational forces. We will thus assume for the fluid pressure in the layer the hvdrostatic relation p=ge (h - z) (9) The pressure gradient thus takes the form Vp = (g(?ðxh, gpðyh, -gp). (10) As a consequence of the above approximations, the horizontal component of equation (1) reads now 0 = -ggV2h + pðzzú , (11) where V2 is the horizontal gradient. The vertical component simply reduces to the equation for the hvdrostatic pressure in the layer. Since the íirst term of the right of (11) is indepen- dent of z, the equation is easily integrated with respect to z. The boundary conditions require that the fluid velocity vanish at the bottom of the layer and we will assume that there is no solid cover and therfore no viscous force at the top. Hence, the conditions are z = f, ú = 0 z = h, 8zú = 0 (12) and the integration of (11) thus results in z = f w = 0 z = h w = 8th (14) Hence, interchanging the vertical integration and the horizontal diíferentiation, we obtain h V2-[f údz] + ð.h = Q (15) ^ f where Q is the specific vertically integrated source volume output that is being introduced to complete equation (15). Infact, this quantity is different from zero only at the volcanic vents. The integral is obtained from (13) resultingin fldz = — (g/3v) (h — f)3 V2h . (16) The final equation is obtained by inserting (16) into (15), viz., ðth - (g/3v)V2-[(h - f)3V2h] = Q (17) This is the result of our approximations and repres- ents the equation of a creeping thin Newtonean fluid layer where the altitude of the surface is the only remaining unknown. To solve this equation, we need data on the kinematic viscosity v, the bottom form f(S) the source density Q(S) and the front boundary cond- ition that has yet to be formulated. As already stat- ed the front condition is enigmatic, but to obtain some semi-quantitative results, we propose the following procedure. A possible approach, although rather proble- matic, consists in regarding the front velocity vQ measured in the direction of the front normal as a purely empirical function of the front thickness (hQ-f), indicated in Fig. 1, and the lava viscosity. JÖKULL 33. ÁR 59
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.