Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1983, Qupperneq 77

Jökull - 01.12.1983, Qupperneq 77
thermal system with a replenishable magma re- servoir at depth (Bjömsson et al. 1982). CHEMICAL GEOTHERMOMETRY AND THE GRÍMSVÖTN SYSTEM In this paper an independent approach is tried for deriving information about the Grímsvötn system from the chemistry of the hlaup water. The method of approach will first be conceptually described in this chapter and then enlarged upon in subsequent sections. The well-researched Krafla area in N-Iceland (Bjömsson et al. 1979) may be used as a model for the Grímsvötn volcanic and geothermal system, the chief difference between the two being that one is submerged and the other one not. The Kraíla caldera is traversed by a dike swarm extending N-S. Below the caldera a magma chamber has been delineated between 3 and 7 km depth, supplying heat to the overlying hydrothermal system. In Grímsvötn the caldera lake and the hydrothermal system may be viewed as two convection cells, transporting the magmatic heat from depth to the bottom of the íloating glacier. The lower system receives cold water down fissures from the overlying caldera lake, and probably also from the general ground water stream flowing toward SW from the Bárdarbunga — Kverkfjöll high (Bjömsson 1974). The cold water is heated up and convected toward the surface. In the upper convective system, that of the caldera lake, the hot water ascends in a plume above the geothermal areas to melt the sole of the floating ice. Chemical analyses of the flood water of 1972 show that the bulk of the caldera lake is of extremeiy uniform comp>osition, indicating effective mLxing in the more than 3 km! body of water. The average temperature in the lake must be 4°C. Melting of the floating ice will be the most effective directly above thermal vents and, since near its melting point ice has very little mechanical strength the surface would stand lowest where the ice is thinnest. In Grímsvötn there is such an indication of thinner ice cover along the south-eastem margin of the caldera, where the surface of the ice slopes towards the south and SE, and is lowest at a point near the SE-comer (Thorarinsson 1974, pp. 227-233). This slope is some 20 m in height, indicating a 200 m thick ice cover in Grímsvötn (Thorarinsson 1974). Apparently the major area of thermal upflow is along the southern part of the marginal fault in Grímsvötn, with its most effective part at the SE- end, near the subglacial outlet of the caldera lake. Cold water probably percolates down the cooler parts of the fissure system towards the north to be convected up again along the southern margin. Chemical geothermometers have been developed in recent years and used successfully to evaluate temperature conditions in geothermal systems (e.g. Amórsson 1980; Amórsson et al. 1982). The basic assumption is that water in the hydrothermal system reaches a temperature-dependent equil- ibrium with various minerals in the surrounding rock - in particular that the concentration of dis- solved silica reaches equilibrium with quartz or chalcedony at a given temperature at depth and that the ascending water does not appreciably lose silica upon cooling. Likewise, the ratio Na/K is governed by a temperature-dependent exchange reaction between the minerals albite and micro- cline. Unlike simple concentrations like [H4 Si04] the ratio [Na+]/[K+] is not disturbed by dilution with pure water. It will be shown in the following that by using certain correction procedures thc Na/K - ratio of the Grímsvötn reservoir can be reconstruct- ed, and the temperature ofthe hydrothermal comp- onent derived. Then the concentration of silica in equilibrium with quartz or chalcedony at that temp- erature is obtained, and by comparison with that analysed in the hlaup-water the degree of dilution is calculated. Since the temperature ofthe Grímsvötn reservoir is maintained at 4°C the heat carried by the thermal water is used to melt ice, according to the equation Ns = NL * Cp (w)/AH[“ * AT where Ns is the number of moles of solid (ice) that NL moles of liquid (water) at (4 + AT) °C will melt, Cp (w) being the heat capacity af water, and AH,1"/ the latent heat of melting for ice. The difference between the dilution due to melt- ing and that obtained through the analysis of the hlaup water must be accounted for by other melt water, percolating from the surface through the glacier, or from the continuous melting of the glacier outside the geothemal system but within the water basin of Grímsvötn. THERMAL VVATER IN THE GRÍMSVÖTN CALDERA At the end of a jökulhlaup the ice cover of Gríms- vötn stays flat and smooth, showing that water is left JÖKULL 33. ÁR 75
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.