Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1969, Qupperneq 60

Jökull - 01.12.1969, Qupperneq 60
Fig. 2. Internal stresses in an element of the ice sheet. in tlie ocean, for which the velocity is given by the expression vg= -~V (AD)0xk (9) where (AD)0 is the geopotential anomaly at the sea surface and V denotes the two-dimen- sional gradient operator V = + 3 5y j (10) For gradient flow the pressure gradient force is equal ancl opposite to the Coriolis force. Since the velocity (9) is independent of densitv it is seen that the equation applies equally well to the slightly lighter layer of ice floating on the surface. Using (8) with the velocity given by (9) gives then G = Ojh V (AD)0 (11) In order to find G the geopotential anomaly must be known under the ice and tliis is not easily found. This will be discussed briefly later. The force R resulting from internal stresses in the ice, can have considerable influence on the ice movement. In their study of the drift of the ice island “Alpha”, Reed and Campbell (1963) concluded that currents and internal stresses were the main source of discrepancy between the actual path of the island and the 56 JÖKULL 19. ÁR computed path based on wind stresses only. Nansen (1902) noted that these forces might be of importance and Sverdrup (1928) attempt- ed to take them into account in liis calcula- tions. He assumed that internal stresses resnlt- ed in a force acting opposite to the direction of the ice movement ancl proportional to the velocity. Reed and Campbell (1962) questioned the validity of this assumption, since the re- sulting force R acted only to retard the motion, whereas both accelerations and decelerations are to be expected from the momentum ex- changes in the moving ice layer. They suggest- ed viewing the ice as a film of highly viscous fluid suspended between two less viscous fluids, air and water. Using the viscous terms in the Navier-Stokes equation they assumed the in- ternal stresses on the form R = O-.hEi V' 2Vi (12) where V2 is the twodimensional Laplace opera- tor ancl Ej is the horizontal kinematic eddv viscosity coefficient for the ice. This equation states that regions of deficient momentum will be accelerated and areas of excessive moment- um are decelerated. On the other hand the form of the equation assumes a constant value of £j in all directions which is open to ques- tion since momentum transfer by shear stresses and normal stresses may not be the same. However, this concept is probably an improve- ment over Sverdrup’s model with friction a linear mcdel of velocity. Using the notation in Fig. 2 the components of the internal stress force are given by the general expressjons Rx hAxAy 3gxx 3x 3°yx 3y R.v hAxAy 3+y 3x + (13) If the ice is assumed to be an isotropic elastic solid the stresses are given by 3?. a^kD + ^ — Pi + 3l\ L 3xj T 3xj J (14)
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.