Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1969, Qupperneq 62

Jökull - 01.12.1969, Qupperneq 62
of ice formation and negative for ice melting. This gives Ice formation — Ice melting = Q-Ax-Ay-At (20) Combining (18), (19), and (20) gives the ice concentration equation ~ + V • (cvi) = Q (21) 3t l'his equation together with the equation of motion (16) determines the movement ancl con- centration of the ice. The two equations are coupled since some of the coefficients of the equation of motion are dependent upon the concentration and the concentration in turn depends upon the velocity field. The two equa- tions must therefore be solved together. Solu- tions of the equations are cliscussed briefly in the next section. SOLUTIONS OF THE ICE EQUATIONS For solutions of the ice equations reference will be made to ihe sea area east of Green- land frorn the strait between Spitzbergen and Greenland southwarcl to Iceland. This area is shown in Fig. 4 along witli a coordinate system whicli might be used for solution of the equa- tions. In order to initiate a solution, the initial conditions, i.e. the velocity field and concentra- tion of the ice within the area under con- sideration, must be known. Furthermore, cer- tain boundary conditions must be satisfied, which could be the following: 1. x = 0. This is the strait between Spitz- bergen and Greenland. It is known that the ice field is very dense on the Green- land side whereas the sea is practically ice free near Spitzbergen. The boundary condi- tion could then be: 0 í| y 3yi: c = 1.0 yi < y < y2 : C = (y2 — y)/(y2 - ýi) yjí yí L :c = 0 where L denotes the wiclth of the strait. The quantities yi and y2 will obviously change with the seasons. JÖKULL 19. ÁR 2. y = Y0. This boundary is generally in re- latively warm water, ancl it is unlikely that ice can enter the area across this line. The conditions here are therefore that ice is moved out of the area across the line but no ice into the area. 3. At the coasts of Iceland, Greenland, Jan Mayen, and Spitzbergen the ice velocity can only be directed away from the shore or along the shore, or otherwise it must be zero. 4. x = X0. Conditions at this boundary are the same as described under (2) above, i.e. ice can only leave the area across this line. Assuming all factors in the equation of mo- tion (16) known, solution of the two equations (16) and (21) is relatively straightforward. The solution is obtained by the method of finite differences. Tlie area of interest is divided into a rectangular network and all derivatives in the equations approximated by finite difler- ence expressions. This method is well suited for solution by a digital computer. The mesh size of the network and thereby the accuracy of the solution is governed by the size or stor- age capacity of the computer. SUMMARY AND CONCLUSIONS This paper has dealt witli the forces acting on drifting sea ice with special reference to sea ice drift in the area east of Greenland and north of Iceland where conditions differ from those prevailing in the Arctic. The equations of motion for the ice as well as an equation describing the ice concentration are derived. The derivation of these equations takes into account the following. 1. F'orces due to surface winds 2. Forces due to currents 3. Coriolis force 4. Internal ice stresses 5. Formation of new ice 6. Melting of ice Any analysis of the type cliscussed here can at best only yield results as reliable or accurate as the data used in the analysis. Extensive in- 58
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.