Jökull


Jökull - 01.12.1987, Side 41

Jökull - 01.12.1987, Side 41
mean annual temperature in Krísuvík) the value taken by F is 4.03. The values of N2 c and Zb can obtained by a common solution of equations (1), (11) and (14) using the mea- sured nitrogen (N2 m) and carbon dioxide concentrations in the steam. Results for the Krísuvík field The amount of steam condensation in the upflow of the Krísuvík field has been estimated by the two meth- ods just described (Table 4, Fig. 5). The results indicate relatively limited condensation for the majority of the samples; less than 50% and 30% in the case of conduc- tive heat loss and mixing with cold water, respectively. Estimation assuming conductive heat loss always gives higher values. This is so because the other model, in- volving condensation in cold water, accounts for some of the N2 in the steam sample by degassing of this cold water. Atmospheric contamination causes values for calcu- lated condensation to be too high. Such is clearly the case for samples 7, 8 and 23 in Table 4 as deduced from the elevated N2 content together with high N2/Ar ratios. Estimated condensation for some of the samples gives negative values (Table 4). Apart from analytical error which will, of course, contribute this could be due to: (1) TABLE 4. Gas geothermometry results (°C) for fumarole samples from the Krfsuvík field and estimated condensation in the upflow No. C02 co2/n2 h2s h2 co2/h2 FTS DPS h2co l H2SC02 K «b 1 296 (288) 277 278 252 215 391 339 313 320 47 25 2 293 (283) 271 277 246 208 379 333 303 318 51 28 3 296 (294 290 279 259 227 406 352 324 322 22 9 4 291 (292) 295 272 259 232 404 355 322 312 -II -4 5 294 (296) 303 250 196 120 285 233 231 289 -31 -9 6 285 (279) 270 259 249 221 381 338 304 296 3/ 18 7 292 (204) 184 268 257 229 393 339 319 308 95 91 8 294 (267) 248 245 270 248 414 333 341 284 76 60 9 290 (292) 297 253 249 217 393 337 306 291 -21 -/ 10 292 (292) 294 250 249 214 389 329 306 288 -4 -2 11 294 (295) 298 254 244 204 385 326 300 293 -12 -4 12 294 (281) 265 252 245 205 380 317 302 290 60 37 13 292 (283) 270 252 208 144 299 247 247 290 50 2/ 14 293 (290) 286 262 245 206 378 323 301 301 23 10 15 293 (283) 270 257 244 204 377 321 299 296 53 29 16 294 (275) 255 249 246 207 369 302 302 287 70 48 17 295 (295) 296 257 238 193 366 307 291 295 -2 -1 18 297 (270) 247 231 204 130 290 220 243 269 79 61 19 290 (290) 292 257 237 196 369 321 288 295 -4 -2 20 306 (280) 256 247 233 171 338 253 287 287 80 60 21 266 (265) 261 200 193 142 271 231 217 235 10 5 22 285 (263) 242 262 270 266 270 201 232 233 71 50 23 328 (195) 179 298 248 175 " " 323 355 99 98 “Values in brackets represent CO?-temperatures corrected for condensation according to Zk. SGeothermometer of ARNÓRSSON and GUNNLAUGSSON (1985) which assumes Fischer-Tropsch reaction equilibrium. ÖGeothermometer of D'AMORE and PANICHI (1980). ^The and H^S geothermometers of NEHRING and D'AMORE (1984), respectively. YCondensation assuming conductive cool- ing. ^Condensation assuming mixing of 100°C steam with 5°C water contain- ing 0.71 mmoles/kg of N^. -20 O 20 40 60 80 %zb Fig. 5. Flistograms showing calculated amount of steam condensation in the upflow of the Krísuvík field. Mode of condensation: Zc conductive heat loss, Zb mix- ing of steam at 100°C with water at 5°C. — Súlurit sem sýnir reiknaða þéttingu gufu í uppstreymisrásum á Krísu- víkursvœði. Háttur þéttingar: Zc varmatap með leiðni, Zb blöndun 100°C gufu við 5°C vatn. Presence of equilibrium steam in the reservoir fluid that will cause C02 concentrations to be high for its temper- ature and (2) secondary boiling of partly degassed wa- ter. As C02 is more soluble in water than N2, primary boiling involving partial degassing will cause the remain- ing water to attain high C02/N2 ratio for its temperature and, therefore, also steam formed by extensive boiling of this water. Re-equilibration of partly degassed water with respect to C02 would enhance the increase in the C02/N2 ratio. It seems unlikely that equilibrium steam in the reser- voir accounts for the negative Z-values found for some samples. The presence of such steam would tend to cause H2 concentrations in the fumaroles to be high relative to C02 as H2 is considerably less soluble than C02. As indicated by the H2-temperatures in Table 4 such is not the case. Fig. 6A shows how partial degassing of equilibrated reservoir water will affect the C02/N2 temperatures for steam formed by extensive secondary boiling of this water and Figs. 6B and 6C show how the extent of the primary degassing affects values for calculated conden- sation. Degassing in excess of some 50% of the initial N2 leads to strongly negative values, both for Zc and Zb; 39
Side 1
Side 2
Side 3
Side 4
Side 5
Side 6
Side 7
Side 8
Side 9
Side 10
Side 11
Side 12
Side 13
Side 14
Side 15
Side 16
Side 17
Side 18
Side 19
Side 20
Side 21
Side 22
Side 23
Side 24
Side 25
Side 26
Side 27
Side 28
Side 29
Side 30
Side 31
Side 32
Side 33
Side 34
Side 35
Side 36
Side 37
Side 38
Side 39
Side 40
Side 41
Side 42
Side 43
Side 44
Side 45
Side 46
Side 47
Side 48
Side 49
Side 50
Side 51
Side 52
Side 53
Side 54
Side 55
Side 56
Side 57
Side 58
Side 59
Side 60
Side 61
Side 62
Side 63
Side 64
Side 65
Side 66
Side 67
Side 68
Side 69
Side 70
Side 71
Side 72
Side 73
Side 74
Side 75
Side 76
Side 77
Side 78
Side 79
Side 80
Side 81
Side 82
Side 83
Side 84
Side 85
Side 86
Side 87
Side 88
Side 89
Side 90
Side 91
Side 92
Side 93
Side 94
Side 95
Side 96
Side 97
Side 98
Side 99
Side 100
Side 101
Side 102
Side 103
Side 104
Side 105
Side 106
Side 107
Side 108
Side 109
Side 110
Side 111
Side 112
Side 113
Side 114
Side 115
Side 116

x

Jökull

Direkte link

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.