Rit (Vísindafélag Íslendinga) - 01.06.1946, Blaðsíða 40

Rit (Vísindafélag Íslendinga) - 01.06.1946, Blaðsíða 40
40 which is the condition for the convergence of the series (71). It is therefore not allowable to conclude from co —> ^>^anxn = oo that because the last serial /2 — 0 /2 = 0 term on the right hand side of (76) may compensate the first serial term and the result be a finite and well de- fined y. The determination of y in (73) is carried out entirely apart from considerations concerning convergence and diverger.ee, by converting (74) into a differential equatíon which operation may be accomplished by the conversion formula, cf. Soc. Sci. Isl., Divergent Power Series, Reykjavik, 1934, or Serial Relations II, in Soc. Sci. Isl., Greinar I, 1940, pp. 177. If we are able to integrate the differential equation, the problem is wholly solved. However, in many cases we have to resort to approximative methods, e. g. the asymp- totic procedures set forth above, in order to discover the nature of the function in question. For those who are not acquainted with the conversion formula, it is v,orth while to recall that the General Serial Relation (3) may be applied with the same effect, if we can find a linear relation between the coefíicients an’ °n + V .....an + m‘ Let in (73) an — n + 1, then we have (n + 2)an — (n + \)an + 1 = 0 (78) Hence, with regard to (74) the right hand side of (3) becomes zero, if q0 = 2x, qx — 3x — 1, q2 = 4x— 2,... ■ and consequently p0 = 2 x, px = 1 — x, p2 — p3 = p4... = 0 . The left hand side of (3) is then: 2 x y (1 x) x ■— = 0 . (79) whence by integration

x

Rit (Vísindafélag Íslendinga)

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Rit (Vísindafélag Íslendinga)
https://timarit.is/publication/1735

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.