Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1980, Qupperneq 60

Jökull - 01.12.1980, Qupperneq 60
y Fig. 15. A mathematical presentation of Fig. 14. A mathematical crack occupying the seg- ment y = 0, -a<x<a, is opened into an elliptic crack by the uniform pressure PQ. — Mynd 15. Stærðfrœðileg framsetning á Mynd 14. Stœrðfrœðileg sprunga, á bilinu y— 0, -a<x<a, opnast yfir í ellipsu, vegna innri (kviku-) prýstings P0. The crust of the Reykjanes Peninsula is composed of basalt lavas and hyaloclastites. For basalt, reasonable values for E and v are 7X105 bars and 0.2 respectively (Price 1966). Corresponding values for hyaloclastite are not known, but u is in any case similar as for basalt. Farmer (1968) gives an approximation formula for E when the density of the rock is known. A number of density measurements on hyaloclastites from the Reykjanes Peninsula have been carried out. The most appropriate value here is 2.4 g/cm3 (Pálsson 1972). The formula by Farmer is: E = 0.9 ( p — 2.1) 10r’ bars (4) where p is the density of the rock. If p is 2.4 g/cm3 then E is 3 X 105 bars, according to the above formula. The average E value for the upper 2—3 km of the crust would therefore be about 5X 105 bars. This is in excellent agree- ment with the value of E, as estimated from P-wave velocities in this area (Pálmason 1971). Hence, I will use this value for E. From Fig. 4a,b we see that the maximum width of the main graben in the Vogar area is about 5 km. Accordingly, we put a = 2.5 km, and use the above values for E and u . For- mula (3) then becomes: _ wmax=P(> (5) where wmax is in crn and Pu in bars. Next we must estimate the overpressure, P . The overpressure is the difference between the lithostatic pressure and the total magma pressure. The lithostatic pressure is given by p R gz, where P R is the density of the rock, g is the acceleration of gravity, and z is the depth below surface. If the total magma pressure is equal to the lithostatic pressure at the magma source (or magma layer), the overpressure is given by the formula: Po=(PR-Pm)gh (6) where h is the height above that source: or rather the vertical length of a dyke from that magma source. Clearly, the overpressure in- creases with height as long as the density of the magma is less than the density of the host rock (assuming the dyke to be directly joined to the source). As soon as ( PR— Pm) < 0, the over- pressure decreases with height. Therefore, other things being equal, the most probabie place for horizontal intrusion is where P r= P m> 3-e- where the overpressure is high- est. If, on the other hand, p R is always larger than pm then the overpressure increases right up to the surface. The depth to the magma source is assumed to be 25 km. This is similar to the value T Einarsson (1972) got from the maximum height of Holocene volcanoes in Iceland. Further- more, a recent study of seimicity near the vol- cano Katla in S-Iceland shows that earth- quakes occur down to depth of 15 — 25 km in that area (P. Einarsson, personal communi- cation, 1979). And during the eruption of Heimaey, 1973, earthquakes occured at depth of about 20 km (Björnsson and Einarsson 1974). These figures indicate that the upper mantle, within the volcanic areas in Iceland, behaves as brittle down to at least 20—25 km. A general magma source, contrary to a local “magma chamber”, must therefore be below this; and the assumed figure 25 km appears to be a reasonable value. The average density of the crust and upper mantle down to this depth is about 3.0 g/cm3 (.Pálmason 1971). The density of tholeiitic basalt in the molten state, at a temperature of 58 JÖKULL 30. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.