Jökull


Jökull - 01.12.1980, Síða 56

Jökull - 01.12.1980, Síða 56
their en echelon arrangement, the ends usu- ally become parallel. However, after a certain amount of growth the ends bend towards each other, the rock in between breaks and the ends combine. (4) As a result of continuing “ten- sion” in the area, the fractures develop into normal faults, i.e. one block subsides relative to the other. It should be noted that normal faults, developed on the basis of tension frac- tures, are either vertical or very steep (Beloussov 1962), as is the case in the present area. I have especially chosen fracture number 64 to indicate this general development — as shown in Fig. 13. From 64 lie a number of minor fractures: 76, 77, 118, 1 19 and 137. All these minor fractures occur at joinings on the main fracture. Fracture 64 is relatively sinu- soidal, although not as regularly as e.g. frac- ture number 36. The joining at fracture 77 is a particularly good example about the accretion of fracture 64. There it can be clearly seen how the fracture, lying from fracture number 76 to fracture number 77, has curved towards the fracture from 77 to 119 until they joined. All the fractures end in very small fissures that die out at the very ends. These small end fractures are the growing parts of the main fractures. It should be noted that some of the end fractures have different orientation from their main fracture. This is clearly seen on fractures number 22, 52, 82, 102 and 114. Obviously, this cannot be explained, like some en echelon tension fissure systems, by rotation of the older parts; and there are in fact only two possible explanations: (1) The end frac- tures follow some weakness in the beds be- neath the surface lava, or (2) the end fractures are curving towards other fractures. The latter is, though, ruled out in some cases as the dis- tance between the fractures is too great. Not- withstanding this, combination of both ex- planations seems to explain these deviations satisfactorily. I also emphasize that these curved fractures are exceptions; the great majority of end fractures follow the same direction as the main fractures. The Vogar fissure swarm is cracking, i.e. lengthening, towards the east. It is, however, difficult to say if the cracking has been con- tinuous or was periodic. Measurements by Tryggvason (1968, 1970, 1974a, 1974b), and by Brander et al. (1976) indicate continuous movement in the area. But these movements are very slow and irregular, and some may be explained by movement of warm water (Tryggvason 1970). The lavas east and west of the mapped area are without fractures, and these are 1—2 thousand years old (J. Jónsson and S. Einarsson, personal communication, 1978). It is known that the fractures from the Vogar fissure swarm continue beneath these young lavas, especially the one at the western end of the swarm. As no fractures are visible in these lavas, it appears that fracture formation in this part of the Reykjanes Peninsula has been small, if any, during the last 1—2 thousand years. Apparently therefore, the fracture formation has not been continuous, but whether it was periodic, or all the fractures formed suddenly, is impossible to assert at present. ORIGIN OF THE VOGAR FISSURE SWARM Outline and crilicism of oíder hypotheses Various hypotheses have been proposed to explain the fissure swarms on the Reykjanes Peninsula in general, and the Vogar fissure swarm in particular. In this section I will briefly state my objections to the most im- portant of these older hypotheses. Riedel shears. In this model each of the bigger fractures in the fissure swarm is supposed to be composed of smaller en echelon fractures. These smaller fractures are called secondary fractures and are believed to be the surface expressions of “hidden deep fractures”, along which the “actual movement has taken place” (77 Einarsson 1967). The surface fractures are therefore essentially Riedel shears, and are explained as such by the' above author. I see some difficulties in this explanation. First: Riedel shears are, as the name implies, shear fractures (i.e. faults), and with a hori- zontal component of movement (Tchalenko 54 JÖKULL 30. ÁR
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.