Upp í vindinn - 01.05.2017, Blaðsíða 51

Upp í vindinn - 01.05.2017, Blaðsíða 51
Háskóli íslands Harnessing of wind energy using wind turbines is an essential part of de~ veloping a sustainable energy grid for the future. Some of the countries that are leading in wind energy development, such as USA and China, are very seismical- ly active and have known earthquake faults running along a large section of their borders. With growing interest in utilizing this renewable energy, it is inevitable that wind farms in some countries are installed close to earthquake sources. In Iceiand, for example, the National Power Company, Landsvirkjun, is planning to build a wind farm in the Búrfell area, which lies close to potential earthquake faults in the South Iceland Seismic Zone. In the near-fault area, ground motion is often affected by forward directivity effects. Such ground motions are known to severely affect tall and flexible structures (see, for example, [7]). Wind turbine towers are slender and tall structures and are more flexible than common build- ings. It is therefore expected that near-fault ground motions would affect wind turbine towers in a different way than they would affect the low-rise apartment buildings that are traditionally built in that area. Existing guidelines for wind turbine design [6,10] mostly rely upon building design codes (for example, [9]) which do not account for forward directivity effects. Response spectral shapes specified in design codes are derived mostly from far-fault ground-motion data and underestimate the effect of velocity pulses commonly observed in near-fault ground motion. Ihe dominant period of near-fault velocity pulse is proportional to earthquake size, with increasing pulse period, the ground motion becomes more critical to structures with long fundamental period of vibration. The fun- damental period of a typical wind turbine can be close to the pulse period of a 7 Mw earthquake, meaning that large seismic demands can be expected. The model being used in this study is the one described by [2]. Ihe turbine is a conventional three-bladed, upwind, variable-speed, with 5-MW rated power. Ihe focus is on the tower structure; hence the modelling of the nacelle and rotor is simplified as lumped masses. Ihe base of the tower is considered as fixed, as- suming the structure is anchored to the engineering bedrock. Ihe tower itself is a steel circular hollow-section with a diameter and thickness which decreases linearly along the height. A finite element model of the tower is created by using Figure 2 - Maximum horizontal nacelle displacement due to each ground motion; the results are divided into different magnitude bins as indicated in the legend. The horizontal axis represents the predominant period of velocity pulse [1] normalized by the fundamental period of vibration of the stracture. b) Average maximum nacelle displacement in each bin computed from time histoiy analysis and response spectral analysis. Figure 2 - Maximum horizontal nacelle displacement due to each ground motion; the results are divided into different magnitude bins as indicated in the legend. The horizontal axis represents the predominant period of velocity pulse [1] normalized by the fundamental period of vibration of the structure. b) Average maximum nacelle displacement in each bin computed from time history analysis and response spectral analysis. 350 300 S 250 z ■S 200 Time hístory GM SRSS RR2011 SRSS EC8SRSS Figure 3 - a) Overturning moment demand due to each ground motion; the results are divided into different magnitude bins as indicated in the legend. b) Average overturning moment demand in each bin computed from time history analysis and response spectral analysis. 51
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68

x

Upp í vindinn

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Upp í vindinn
https://timarit.is/publication/1929

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.