Upp í vindinn - 01.05.2017, Blaðsíða 52

Upp í vindinn - 01.05.2017, Blaðsíða 52
Upp í vindinn linear elastic beam-column elements (100 elements in the tower). The damp- ing ratio used is 1% of critical, which is the recommended value used for most standards [6]. The translational and rotational head mass applied at the tip along with other relevant parameters of the model are listed in [4]. Undamped natural frequencies obtained from eigenvalue analysis of the fi- nite element model are presented in Table 1 along with the effective modal mass. The fundamental modes are displayed both for side-to-side (SS) and for-aft (FA) motion in Fig, 1. The effective modal mass for the perpendicular directions are computed separately. For verification, the frequencies obtained by Bir and Jonk- man [1] using the BModes and ADAMS software are presented in the correspond- ing columns in Table 1. The dynamic analysis presented here considers ground shaking in one horizontal direction only: due to the symmetry of the simplified structured, and since pulse like ground motions are significantly stronger in one direction, this simplifieation is justified. As seen from Table 1 the effective modal mass is nearly the same in both direetions, and the 2 first modes account almost 80% of effective modal mass in both cases. Subsequently linear elastic dynamic analysis is performed us- ing time-histories and response spectral methods. The near-fault ground mo- tion data used in this study is a subset of data described in [7] For a site close to tectonic plate boundaries or known earthquake faults, a consideration to near fault effects could be incorporated by use of near fault response spectra. For this study the near fault response spectra [7], which will henceforth be referred to as RR2011, is used and its effectiveness evaluated against the simulated time histo- ry, ground motion response spectra obtained using the SRSS combination rule (GM SRSS), and the Eurocode 8 response spectra (EC8) scaled by the PGA of each ground motion record. Using time history analysis, the maximum horizontal displacement of the nacelle is obtained using 70 near fault ground motions. The results are shown in Figure 2 a) as a function of the normalized pulse period of ground motion (pulse period divided by the fundamental structural period). The average value of maximum displacement is roughly 0.5 meters and its maximum is almost 1.5 m. As is evident from Figure 2, the larger displacements are caused by ground motions with a pulse period close to the fundamental structural period. These is due to resonance effects. Interestingly, some of the earthquakes in the smaller magnitude bins produce a larger response than in the larger magnitude ones. The main reason appears to be the result of the scaling effect of the pulse period with earthquake magnitude. For this specific type of structure with a long fundamental period the pulse period generated from the second bin is closest to the fundamental structural period. Therefore, the ground motions in the second magnitude bins seem to produce, on the average, larger response than earthquakes of greater magnitude. Average maximum displacement demands at the top of the tower for each magnitude bin are shown in Figure 2 b). It is evident that the two larger bins produce significantly larger displacement demands than the bin with smaller size earthquakes. Time history and GM SRSS results are very close to each other, implying that response spectral analysis is appropriate. RR2011 results, for average displacement in each bin, seem to adequately simulate the response of the structure. EC8 spectral shapes seem to over-estimate the response for small magnitude earthquakes, and significantly under-estimate it for larger earthquakes. This is not surprising considering the EC8 spectral shape is based mostly on far-fault ground motion records. 52
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68

x

Upp í vindinn

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Upp í vindinn
https://timarit.is/publication/1929

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.