Upp í vindinn - 01.05.1999, Blaðsíða 28

Upp í vindinn - 01.05.1999, Blaðsíða 28
... UPP I VINDINN The derivation of IDF curves for precipitation from M5 values Abstract The generalised distribution adapted for precipitation is in principle established for 24 hour values only. Nevertheless, the same distribution applies for the observa- tions of shorter duration precipitation available in Iceland. By applying the prin- ciple of identical statistical distribution for standardized annual maxima of any duration, IDF (Intensity - Duration - Frequency) curves have been derived. An associated program calculates the IDF-values on basis of M5 and Cj, which are the two parameters that define the generalized pre- cipitation distribution. 1 Introduction A generalized formula for IDF-curves is suggested in Eliasson 1997. 1 = RCW f(T) g(tr) (1) Here we have: I rain intensity [m t'1] period. Similarly we have for a fixed return period l(tr+ 1) < I(tr), T fixed (3) To use this distribution it is necessary to have a map that shows the value of the index variable R(T0,tr0) at each locality. 2 The index variable It has been suggested to use the 5 year 24h precipitation as index variable (Eliasson 1997). This makes T0 = 5 and tro = 24 h = 1440 min. To use this particular index variable was originally suggested in the Flood Studies Report (NERC 1975) and later adapted by Norway (Förland et al. 1989). Today a map with estimated five year 24h precipitation values, called M5, exist for all Iceland in a large scale, suitable for esti- mation of IDF curves for areas larger than 25 km2 (10 mi2). For smaller areas there exist 3 maps for the south and the southwest lowlands. They cover an area where over 75% of the Icelandic population lives. These maps are prepared by the Engineering Institute of the University of Iceland in cooperation with the Icelandic Meteorological Bureau. Jónas Elíasson lauk fyrrihlutaprófi í verkfræði frá H.í. 1959, prófi í byggingarverkfræöi frá DTH 1962, lic.techn. 1973. Er nú prófessor viö umhverfis- og byggingarverkfræðiskor H.í. T return period in years [t] t duration [t[ f and g are functions [-] tro fixed duration, g(tr) = 0 [t] T0 fixed return period f(T ) = 0 [t] R is an index parameter it varies with the locality, but not with T or tr, in each locality R is fixed, once T0 and tr0 are chosen Karl Imhoff (Novotny et al. 1989) originally proposed this form of a generalized formula. Using this form of generalized IDF relationship has the advantage that the variation with dura- tion (T) and return period (tr) is the same everywhere and the spatial variation is taken care of by a single index variable. This is of course an approximation, but it can never be a very bad one because (1) defines a set of lines in the T - t and the lines can never intersect, not even in the outer limits where T goes to infinity and tr to zero. This may be seen by comparing two lines, one for a fixed value T and another for the fixed value T + 1. We must always have 3 Distribution of 24h precipitation f(T) It has been shown that the General Extreme Value no 1 (GEV 1) cunrulative distribution function (Gumbels CDF) fits rainfall data very well. The best way to do this is to use the station - year method. It has been shown that precipitation maxima of 24h duration fit GEVl very well in unrelated areas such as Washington State, Iceland (Eliason 1997) and goes for Denmark to. It is necessary to use the station - year method to get enough number of points. Estimating individual stations will presum- ably result in a skewness that is somewhat different from 1.14 which is the skewness factor of the Gumbel distribution in the GEV family of CDF’s. But accepting Gumbel instead of the more general GEV has the advantage of using a two parameter CDF instead of a three parameter CDE When using a two parameter CDF we can work with standardized 24h annual maxima, stan- dardized by subtracting the mean and dividing with standard deviation. Then we use the station year method on the stan- dardized annual maxima. In this manner annual precipitation maxima for entire meteorological regions can be assembled on one line (Eliasson 1997). Written in terms of the M5 the distribution becomes. x = MT = M5( 1 + Cj (y-1.5)) y < yUm (4) I(T) < I(T + 1), tr fixed (2) x Stochastic variable In words, intensity for any duration must increase with return y = -logn(-logn(1 - 1/T)) 28
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56

x

Upp í vindinn

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Upp í vindinn
https://timarit.is/publication/1929

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.