Jökull


Jökull - 01.12.2003, Blaðsíða 35

Jökull - 01.12.2003, Blaðsíða 35
The 1783–1785 Laki-Grímsvötn eruptions rubble (Keszthelyi et al., 2000), which covers about one half of the Laki lava, indicate that it was initially formed by break up of coherent and stationary pahoe- hoe crust as a result of surging within the underly- ing lava. This process exposes the incandescent flow interior and at this stage the rubble grows in thick- ness; first by autobrecciation of incandescent lava and then by the moving lava as it piles the rubble up into concentric pressure ridges oriented perpendicular to the flow direction (e.g. Figure 7f). However, the base of these rubbly lavas is typified by smooth pahoehoe surface, showing that they have a hybrid morpholog- ical character that falls between the two end-member basalt lava flow types, a’a and pahoehoe. However the emplacement mechanism of these lavas differs signif- icantly from that of a’a and pahoehoe and therefore it is considered to be a distinctive flow type, named rub- bly pahoehoe by Keszthelyi and Thordarson (2000). All of the flow structures mentioned above are in- dicative of endogenous growth, suggesting that insu- lated lava transport and growth by inflation played an important role during the emplacement of the Laki lava (e.g. Thordarson and Self, 1993; Keszthelyi et al., 2000). It is, therefore, reasonable to assume that the lava, including the surges, was transported from the vents to the active flow fronts within preferred in- ternal pathways (i.e., master lava tubes). Such path- ways were presumably established early on during emplacement of the lava in the Skaftá River gorge, and later in the Hverfisfljót River gorge, and subse- quently lengthened as the lava flow field grew in size. The lobed architecture of the Laki flow field is also consistent with this view, because compound flows are one of the characteristic features of endogenous flow emplacement (e.g., Walker, 1991; Hon et al., 1994; Mattox et al., 1993). Each lobe is produced as a breakout from the main pathways or pre-existing lobes at the active flow front or onto the lava surface (Figure 7f), resulting in incremental lengthening and thickening of the flow field. ACONCEPTUALMODELONTHE PROGRESS OF THE LAKI ERUPTION The above analysis of the contemporary accounts clearly shows that the Laki eruption featured distinc- tive eruption episodes reflecting periodic increases in the magma discharge (Figure 6). Each episode be- gan with an earthquake swarm of increasing inten- sity that was followed by vigorous explosive activ- ity at the fissures and sudden increases in outflow of lava from the fissures. The seismic swarms gener- ally lasted for several days to a week, with the ex- ception being the first which lasted for 3–4 weeks. Each earthquake swarm was followed by a short-lived subplinian or phreatomagmatic explosive phase lead- ing into a longer-lasting phase of lava fountaining and effusive activity. A surge of lava emerged from ei- ther the Skaftá River or Hverfisfljót River gorge 3–5 days after the beginning of each explosive phase. The events described above define an eruptive episode and all in all Laki event featured 10 such episodes (Figure 6). The Laki cone-row is composed of at least 10 en echelon fissures, trending N47–48◦E (Figure 3). Us- ing tephra stratigraphy, coupled with descriptions on the location and timing of explosive activity and lava surges, each of the ten eruption episodes is linked to the opening of a new fissure segment and the stepwise propagation of the locus of activity from the south- west to the northeast (Thordarson and Self, 1993). In this context it is worth noting that there is a percep- tible increase in the frequency of eruptions at Gríms- vötn during fall 1783 and that the volcano was active through to May 1785, adding four eruption episodes to the 1783–1785 activity on the Grímsvötn volcanic system (Table 2). It is conceivable that these trends are linked. The obvious synchronisation in the ac- tivity at the Laki fissures and the Grímsvötn volcano indicates that both eruptions resulted from the same volcano- tectonic event. However, a range of evidence show that the magma erupted at the Laki fissures is derived from a large deep-seated reservoir located at the crust-mantle boundary, whereas the eruptions at Grímsvötn occurred from a shallow crustal magma chamber (Gudmundsson, 1987; Sigmarsson et al., 1991; Thordarson and Self, 1993). Thus, the trends mentioned abovemay indicate a gradual restoration in the flow of magma from the deep-seated reservoir to the shallow magma chamber beneath the Grímsvötn volcano. JÖKULL No. 53, 2003 33
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.