Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 26

Jökull - 01.12.1973, Qupperneq 26
Recalling that L = 2h, the critical condition for convection becomes . X + T A------- 4r (23) agfih4 72hL' V‘l T2 (20) The ratio IiI//t2 is simply a numerical factor, hence (20) is of the same form as the results obtained by Jeffreys (1928). Since the strip model leaves the aspect ratio of the convection cell indeterminate, we must choose \ and r on physical grounds. Intui- tively it appears fairly evident that the lialf- cell sketched in Fig. 2 will be nearly rectangular and that X — 2h is a reasonable assumption. This choice would also coincide witli the re- sults of Jeffreys (1928) for the present case. Inserting X = 2h and substituting for I/ from (10), we can write (20) R = 72(4-3 Q i2 (21) where £ = r/h. Making the physically reason- able assumption that £ = 0.35 (21) becomes Since the core is fairly small, tliis simplification should not result in serious error. The lower boundary of the cell is in contact with a therm- ally insulating slab, hence the temperature gra- dient is continuous at all points in the strip. Assuming constant conductivity, we must solve d2T dT K Æ oe" *r = _<>A- <24> with the boundary conditions T(0) = T(L) = 0 For As = constant, the temperature T(x) is R_ jío/Jh^ 1750 i/a (22) This result is quite close to the result of Jeffreys (1928) of R = 1708, even though we have neglected all horizontal heat transfer. On the present model, the effect of horizontal heat transfer would simply be to modify the value of £■ APPLICATION TO AN INTERNALLY HEATED FLUID In order to determine the temperature distri- bution in the strip model treatment, we place all the heat sources in the cell uniformly throughout the vertical branches. The specific heat production in the vertical segments As is adjusted so that the total heat production in the cell is unchanged. Thus ASVS = AV where Vs is the volume of the vertical segments. A and V are the specific production and volume of the cell respectively, or Inserting (25) into (9) we obtain for the total head H = p2«gAsL3 4K ^ b (26) where g(b) = 1/b (1 — 4/b tanh (b/4)). (26') Substituting (26) into (8) and multiplying by L/a yields where now p2AsagLíT2 N =------------- KíjaL' (27) (28) We seek the condition for which (27) has a solution other than u = 0. For small b g(b) (29) 24 JÖKULL 23. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.