Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 36

Jökull - 01.12.1973, Qupperneq 36
TABLE 3. Critical Rayleigh numbers for a two-phase mantle-wide layer (based on (mks. units)). h = 3 X 10«; A = 10-12; a = 2 X 10-6; c = 103; g _ 10; « = 2x10-5; pí = 10-3 Transition Critical Rayleigh No. W. Phase Change Critical Rayleigh No. W/O Phase Change % Difference Mg2Si04 -> Mg2Si04 forsterite -» spinel 1830 2000 -8 Mg2Si04 -» 2MgO + Si02 spinel -» oxides 2690 2000 + 34 Fe2Si04 -» Fe2Si04 fayalite -» spinel 1880 2000 -6 Fe2Si04 -» 2FeO + Si02 spinel -» oxides 2350 2000 + 18 For the range of viscosity 1015 to 1022 m2/sec, the Rayleigh number for the entire mantle falls in the range 103 5? R ^ 10io Therefore for mantle-wide convection, the vis- cosity is the dominant factor as to the dynamic state of the mantle. The known phase transi- tions are of only minor importance. Next consider convection in the upper mantle only. Because h is smaller, the critical number is more affected by the phase transitions. Sup- pose, for example, that convection occurs in the range 100—700 km. Then the ratio di/h is 0.5 and 0.9 respectively. We have calculated the critical number for this case with the as- sumption that /3^ = 10-3 °C/m despite the smal- ler value of h. This appears reasonable since the heat production in the upper mantle is probably greater than 10—i2 w/kg. The results of these calculations are listed in Table 4. Table 4 shows that the results for a 600 km layer are essentially the same as for convection in the entire mantle, though the phase transi- tion effects tend to be larger. The spinel-oxides transition in Mg2SiC>4 raises the critical number by a factor of 2. For viscosity in the range 10ið to 3 X 1017 m2/sec, the Rayleigh number falls in the range 3 x 104 ^ R ^ 107 If the Rayleigh number is actually of the order of 3 X 104, the effect of the spinel-oxides transi- tion may be to restrict convection to depths less than 650 km. We wish to point out that the negative terms in the denominator of (58) are less than unity for the mantle transition parameters. More- over, had we used £ = 0.28, which appears to be the appropriate value for an internally heat- ed homogeneous fluid, the results would be essentially the same. CONCLUDING REMARRS We have developed a simple, one-dimension- al model which is suitable for treating convec- tion in complex geophysical systems. As an example, we have examined the important pro- blem of convection in an internally heated 34 JÖKULL 23. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.