Jökull


Jökull - 01.12.1973, Side 36

Jökull - 01.12.1973, Side 36
TABLE 3. Critical Rayleigh numbers for a two-phase mantle-wide layer (based on (mks. units)). h = 3 X 10«; A = 10-12; a = 2 X 10-6; c = 103; g _ 10; « = 2x10-5; pí = 10-3 Transition Critical Rayleigh No. W. Phase Change Critical Rayleigh No. W/O Phase Change % Difference Mg2Si04 -> Mg2Si04 forsterite -» spinel 1830 2000 -8 Mg2Si04 -» 2MgO + Si02 spinel -» oxides 2690 2000 + 34 Fe2Si04 -» Fe2Si04 fayalite -» spinel 1880 2000 -6 Fe2Si04 -» 2FeO + Si02 spinel -» oxides 2350 2000 + 18 For the range of viscosity 1015 to 1022 m2/sec, the Rayleigh number for the entire mantle falls in the range 103 5? R ^ 10io Therefore for mantle-wide convection, the vis- cosity is the dominant factor as to the dynamic state of the mantle. The known phase transi- tions are of only minor importance. Next consider convection in the upper mantle only. Because h is smaller, the critical number is more affected by the phase transitions. Sup- pose, for example, that convection occurs in the range 100—700 km. Then the ratio di/h is 0.5 and 0.9 respectively. We have calculated the critical number for this case with the as- sumption that /3^ = 10-3 °C/m despite the smal- ler value of h. This appears reasonable since the heat production in the upper mantle is probably greater than 10—i2 w/kg. The results of these calculations are listed in Table 4. Table 4 shows that the results for a 600 km layer are essentially the same as for convection in the entire mantle, though the phase transi- tion effects tend to be larger. The spinel-oxides transition in Mg2SiC>4 raises the critical number by a factor of 2. For viscosity in the range 10ið to 3 X 1017 m2/sec, the Rayleigh number falls in the range 3 x 104 ^ R ^ 107 If the Rayleigh number is actually of the order of 3 X 104, the effect of the spinel-oxides transi- tion may be to restrict convection to depths less than 650 km. We wish to point out that the negative terms in the denominator of (58) are less than unity for the mantle transition parameters. More- over, had we used £ = 0.28, which appears to be the appropriate value for an internally heat- ed homogeneous fluid, the results would be essentially the same. CONCLUDING REMARRS We have developed a simple, one-dimension- al model which is suitable for treating convec- tion in complex geophysical systems. As an example, we have examined the important pro- blem of convection in an internally heated 34 JÖKULL 23. ÁR
Side 1
Side 2
Side 3
Side 4
Side 5
Side 6
Side 7
Side 8
Side 9
Side 10
Side 11
Side 12
Side 13
Side 14
Side 15
Side 16
Side 17
Side 18
Side 19
Side 20
Side 21
Side 22
Side 23
Side 24
Side 25
Side 26
Side 27
Side 28
Side 29
Side 30
Side 31
Side 32
Side 33
Side 34
Side 35
Side 36
Side 37
Side 38
Side 39
Side 40
Side 41
Side 42
Side 43
Side 44
Side 45
Side 46
Side 47
Side 48
Side 49
Side 50
Side 51
Side 52
Side 53
Side 54
Side 55
Side 56
Side 57
Side 58
Side 59
Side 60
Side 61
Side 62
Side 63
Side 64
Side 65
Side 66
Side 67
Side 68
Side 69
Side 70
Side 71
Side 72
Side 73
Side 74
Side 75
Side 76
Side 77
Side 78
Side 79
Side 80
Side 81
Side 82
Side 83
Side 84
Side 85
Side 86
Side 87
Side 88
Side 89
Side 90
Side 91
Side 92
Side 93
Side 94
Side 95
Side 96
Side 97
Side 98
Side 99
Side 100
Side 101
Side 102
Side 103
Side 104
Side 105
Side 106
Side 107
Side 108
Side 109
Side 110
Side 111
Side 112
Side 113
Side 114
Side 115
Side 116
Side 117
Side 118
Side 119
Side 120
Side 121
Side 122
Side 123
Side 124
Side 125
Side 126
Side 127
Side 128
Side 129
Side 130
Side 131
Side 132

x

Jökull

Direkte link

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.