Jökull


Jökull - 01.12.1961, Blaðsíða 64

Jökull - 01.12.1961, Blaðsíða 64
and calcium carbonate in pores and fissures near to the surface suppresses the flow and may in some cases completely close all surface outlets.The implications will be discussed below. The geothermal fluid is also capable of a sel- ective transport of a great number of other components. Many geologists are of the opinion that a number of metalliferous deposits are for- mecl by geothermal activity. The relevant problems are treated at length in three important papers by White (1955, 1957a, 1957b). Examples are pressented of the connection between thermal activity and de- posits of quicksilver, antimony, manganese, tungsten, gold, silver, fluorite, sulphur and arsen. White presents also a thorough discussion of the geochemistry of thermal waters. But the recovery of chemicals from active thermal areas is at present of minor economic importance. The chemical industry in Tuscany, Italy, is, in fact, the only producer of chemical components from geothermal fluids. Some int- eresting studies have also been made in New Zealancl. (b) The chemical industry of the Larderello s. a. The various aspect of the recovery of chemi- cals in connection with the large power pro- duction of the Larderello s. a., Tuscany, Italy, are discussed at considerable length by Garbato (G/63) and Lenzi (G/39). A part of their treat- ment is devoted to the removal of corrosive gases and impurities from the steam in the power-cycle. These aspects are beyond the scope of the present report. The activities at Larderello started in 1827 and were at that time solely devoted to the recovery of boric acid from the thermal springs. The power generation was initiated at the be- ginning ol' this century. As of now the power generation is by far the main industry and the recovery of chemicals from the thermal fluids is only a relatively small business. The main chemi- cals are boric acid, carbon dioxide, sulphur, ammonium sulphate and ammonium carbonate. (i) Boric acid. The natural-steam at Larderello contains about 200 parts per million by weight of boric acid. The primary step in the recovery of this component consists in the washing of the steam by water. Water is purnped into the steam pipes from the wells ancl separated out again. The solution obtained contains about 3.000 ppm of boric acid. The solution obtained con- centrated by evaporation and the boric acid recoverecl by crystallization. The washing of the steam leads to the loss of its superheat and implies a loss in power pro- duction of about 4%. (ii) Carbon dioxide. The natural- steam con- tains about 4% by weight of carbon dioxide. There are therefore at hand very large quanti- ties of this gas. A plant for the production of liquid and solid carbon dioxide was erected in the late thirties but this procluction came to an end at the beginning of the war. (iii) Sulphur. The large amount of hydrogen sulphide in the natural-steam at Larderello, about 80 ppm, presents problems because of air contamination. There are therefore installations for the removal of this gas. The removal is ef- fected either by an absorption by means of an iron-oxide becl or by an absorption into an alkaline arsenic-solution. The oxidization of the gas gives elemental sulphur which is procluced is bars. (iv) Ammonium sulphale and ammonium car- bonate. The natural-steam contains about 200 ppm of ammonia. This gas is recovered from the steam-transformers of the indirect power- cycle applied in the older power plants. It is converted into the sulphate and carbonate. This industry is of minor importance. (c) Experimental production of lithium and other materials jrom thermal water in New Zealand. Kennedy (G/45) presents a discussion of the possible recovery of chemicals from the thermal waters at Wairakei in New Zealancl. As of now the thermal water issued by the wells transports a total of 105.000 tons/year of sodium chloride, 13.000 tons/year of potassium chloride ancl 2.400 tons/year of lithium carbonate. The esti- mated value of these chemicals is about 6 shil- lings per 1.000 gallons of water. The chemicals can be recoverecl by a combi- ned electrodialysis-evaporation procedure. How- ever, the total cost of recovery amounts to 7 or 8 shillings pr. 1.000 gallons of water. The process is therefore not economical. A compre- hensive discussion of the problems involved is presented and experiments are describecl that have been carried out in order to study the relevant problems. 62
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.