Jökull


Jökull - 01.12.1961, Blaðsíða 43

Jökull - 01.12.1961, Blaðsíða 43
5. TEMPERATURE MEASUREMENTS IN BOREHOLES. Borehole temperatures are measured primarily for the purpose of inferring formation tempera- tures. At stationary conditions in a non-flowing borehole the measured data are simply equal to the formation temperature. On the other hand, complications arise from any flow of fluids. Thus the drilling fluid induces instati- onary conditions by cooling or heating the form- ations around the hole. All measurements carried out during or shortly after drilling are therefore seriously affectecl. This effect will be cliscussed below. (a) Experimental technique. Three types of temperature measuring devic- es have been applied, viz. mercury maximum thermometers, electric resistance thermometers and thermometers of the vapour pressure type. (i) Tlie maximum thermometer is a simple and inexpensive device. It has several disacl- vantages, however. First, in practice only mono- tonously increasing temperature-depth relations can be recorded satisfactorily. The use of high- inertia thermometers for decreasing tempera- ture is possible but is quite time consuming. Second, no telerecording is possible. Third, al- though the accuracy may be good the mercury column may tend to drop under hoisting out of the hole. Moreover, the device is slightly sensi- tive to pressure. These disadvantages are quite serious and the maximum thermometer is there- fore not a satisfactory instrument. (ii) The semiconductor resistance thermo- meters, the thermistors, are instruments of a high accuracy which can be used for telere- cording. In routine work an accuracy of 0.1 °C is easily attainable. The accuracy can be increased consiclerably by a careful repeated calibration. Moreover, the thermistor responds relatively rapidly to temperature changes. The thermistor is an ideal instrument for low-temperature boreholes. Experience indicates that the telerecorcling system is reliable up to a temperature of about 150° C. On the other hand, the insulation of the cable and the tlier- mistor-connection presents difficulties at higher temperatures. It is hoped, however, that the insulation difficulties may be resolved. (iii) The temperature recorders basecl on the vapour pressure system are yet the only reliable instruments available for temperatures aliove 150° C. Present instruments are applicable up to 260° C. They are quite rugged devices but the accuracy is only about one °C. Another drawback is a relatively slow response. Several minutes are required for equilibrium. In most high-temperature work, however, this accuracy and response tirne do not impose serious limit- ations. (b) The influence of the drilling fluid. The transient temperature conditions induc- ed by the drilling result mainly from the cool- ing effect of the drilling fluid. This effect is particularly great in modern rotary drilling where circulations up to more than 100 metric tons per liour are applied. The fluid is kept at a relatively low temperature which in drill- ing for natural steam may be as niuch as 150 °C below the formation temperature. At the moment drilling is discontinued, and the circulation comes to rest, the hore- hole temperature will be equal to the tem- perature of the fluid during drilling. The recovery to the formation value is very slow due to the thermal properties of the rock. The relaxation time for a borehole of 1,000 meters, which may be completed in three to four weeks is more than two months. On the other hand, the formation tempera- ture is of fundamental importance and esti- mates of this quantity may be required dur- ing drilling. In natural-heat work the de- cision whether the drilling of a well should be continued or not will in general depend to a large degree on the temperature of the formations penetrated. The question arises whether thc formation temperature can be estimated on the basis of an extrapolation of transient ltorehole data measured durlng breaks in the clrilling operation. The extrapolation of the borehole data in- volves two steps. Firstly, an estimation of the temperature field in the formation at the dril- ling is discontinued. This represents the initial condition for the second step. Secondly, a com- putation of master curves for the temperature rise at the various formation temperatures pos- sible. A matching of the computed curves and a sufficient amount of observed data shoulcl 41
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.