Jökull


Jökull - 01.12.1968, Blaðsíða 31

Jökull - 01.12.1968, Blaðsíða 31
Evaporation and convection The transfer of water vapour and sensible heat frorn a water surface to the atmosphere is analogous to the heat transfer in a turbulent river, provided the wind velocity is substantial. fn a thin layer near the surface the transfer is effected by molecular diffusion but higher up in the wind turbulent diffusion is prevail- ing. The diffusion equations are analogous to (3) or (4) but instead of cT there we have now: for convection: cp 0, where cp is the speci- fic heat of air at constant pressure and 0 the potential temperature; for evaporation: q, the specific humidity. The use of 0 and q, rather than other expres- sions for the temperature and humidity, is preferred because they are conservative with respect to dry-adiabatic motions (Haltiner and Martin 1957). Taking the x-axis in the wind direction and neglecting lateral diffusion the diffusion equa- tion for evaporation for the steady state be- comes 3(vq) J_a_ /K J3(vq) \ 3x 3z \ E 3z / (21) where y is the specific weight of air. The eddy-diffusion coefficients for evapora- tion, Ke, and convection, Kn, are functions of the height above the ground, wind velocity, the stability of the air etc. The coefficients are of the same order of magnitude as the coefficient for transfer of momentum, the eddy viscosity, Kj,. From the phenomenological turbulence theories an expression for KM can be obtained. (corresponding to (7)) but KE and KH can not be derived in a corresponding way. The simp- lest hypothesis is to assume Ke = KH = Km. With this and certain other assumptions Snt- ton (1953) has solved the equation (21) for an area which is infinite across wind and finite down wind and the wind direction is per- pendicular to the area. He uses a power law for the wind profile and an expression for KM which is derived on basis of statistical theory and mixing length theory. Sutton’s solution can be written E = constant ■ (qw — qa) vz° ,'s x0°-88 (22) where E is the total rate of evaporation per unit of cross wind length, x0 is the down wind dimension of the area, vz is the wind velocity at height z, qw is the specific humidity at the water surface and qa is the specific humidity of the air. It should by noted that E is not directly proportional to the area of the water surface. The relation (22) is in good agreement with laboratory experiments and observations in the field (Sutton 1953). The relation (22) is valid for a smooth surface but Sutton states that a virtually identical expression is obtained for a rough surface. It is to be expected that a relation similar to (22) is valid for evapora- tion from rivers. In practical cases the wind direction is however more or less variable and besides it would be complicated to include the river width in computations. The assumption of the equality of the dif- fusion coefficients needs a closer consideration. According to Sutton (1953) KH > KB = KM in unstable conditions and KH = KB > KM in stable conditions. When we are concerned with heat loss from open water during frost it is thus possible that the ratio KE/KH is a func- tion of the difference Tw — Ta, where Tw and Ta are the temperatures of the water and the air. Undoubtedly the wind structure is also significant. Smith (1951) has shown that con- tinuous records of the wind direction can be used as a basis for classification of the turbul- ence of the air. It seems worth-while to in- vestigate if there is a correlation between KE/ ICH and Smith’s types of turbulence as con- tinuous records of wind direction are readily obtainable. For comparison of the rate of lieat loss by evaporation and convection and to arrive at some approximate formulas we shall study the simplest case: the steady state over infinite water surface, assuming that KB = KH = KM. In this case the rate of heat loss per unit area by evaporation is = <*»> JÖKULL 18. ÁR 365
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.