Jökull


Jökull - 01.12.1968, Blaðsíða 33

Jökull - 01.12.1968, Blaðsíða 33
evaluated such measurements from the rivers Nidelven and Glomma in Norway. On the basis of the technical literature available at that time he assumed that the wind function was on the form (v + 0.3) °-5. Devik found the fol- lowing approximate expressions for the heat loss by evaporation and convection: s2 = 2.25 (v + 0.3)0-5 (ew - ea) (31) s8=1.4(v + 0.3)o.5(tw-t.) (32) where s is in Mcal km-2 sec-1, (Mcal = 106 cal), e in mb, t in °C and v in m sec-1. The wind velocity at the time of the heat loss measure- ments was rather low, or 3.9 m sec-1 on the average. In newer evaporation formula the exponent n is higher than 0.5 and in many formulas it is 1.0. In order to investigate this question measurements of the heat loss from calorimeters with 0.09 m2 water surface were undertaken at Tangafoss, a temporary meteorological stat- ion in the Thjorsa Basin, in 1965. For air temperatures from 0 to -t- 15 °C and p ~ 960 mb the following approximate expressions for the rate of heat loss from the calorimeters by evaporation and convection were obtained: s2= 1.9 v6°-845 (ew-ea) (33) s3 = 1.2 veo.8« (tw - ta) (33) where vo is the wincl velocity in m sec-1 at 6 metres above the ground, e in mb, t in °C ancl s in Mcal km-2 sec-1. A wind function of the form (a + bv) could just as well be fitted to the measured points and indeed this form is most common in evaporation formulas. The wind velocity, V6, during the measurements varied from 2.5 to 13 m sec-1. It is not to be expected that formulas derived from measure- ments in calorimeters will apply to rivers and most likely they give too high a rate of heat loss. Nevertheless we have used the above ex- pressions together with (20) for computations of heat loss in the Thjorsa Basin, but of course the formulas will be revised when material from direct observations becomes available. The formulas (33) and (34) give a considerably liigher rate of heat loss than most other heat loss formulas, for example the Russian formulas used by Dingman, Weeks and Yen (1968). It should be noted that where we have used (33> and (34) the wind velocity is measured at the rivers and that wind velocities are rather high (monthly means of v«: 6 to 12 m sec-1). It must be emphasized that different formulas for the rate of heat loss by evaporation and con- vection are not comparable if the actual wind velocity over the water surface is not used. PRACTICAL APPLICATIONS AND EXPERIMENTAL CHECKS. In investigations of river ice in the Thjorsa Basin the heat loss formulas have been used for climatological studies and calculations of ice production and ice conditions. For comparison of the ice-forming intensity between various frost periods and from year to year daily means of the heat loss from a water surface at 0 °C have been calculated. Daily means of the meteorological factors wrere used and the calculations were done with an electronic computer. With this method all the relevant meteorological factors except preci- pitation and drifting snow are taken into ac- count. Characteristic features of the ice conditions of Thjorsa River and its tributaries are large areas of open water which remain throughout the winter. The formation of an ice cover is here hindered by swift currents and inflow of warm groundwater is also significant in some reaches. During frost periods immense quanti- ties of frazil ice are produced in the open water and carried downstream to low velocity reaches where it forms huge ice jams. In con- nection with the hydro-electric development of the rivers a knowledge of the frazil-ice dis- charge is of great importance at some sites. When the ice production is substantial, anchor ice and border ice is only a minor part of the total ice production and accordingly the frazil ice discharge can be calculated from meteoro- logical observations by rneans of the heat loss formulas provided the size of the open-water area upstream from the site is known. The open-water areas can be determined from aerial photographs but as this is rather expensive and time-consuming we are trying to find a correla- JÖKULL 18. ÁR 367
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.