Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 24

Jökull - 01.12.1973, Qupperneq 24
//////////////////////////////////////////////^ o II 1- T = T0 o II f- 1 !i n m! //////////////////////////////////77/////7/77/Z////7//// x = 0 x=L/2 x = L Fig. 3. The strip model of a convection cell. the plane x = L/2; for an internally heated fluid, there is no condition at the median plane. There is negative buoyancy in the region Oíxí L/2; and positive buoyancy in the region L/2 x 5= L. Due to the insulation of the walls, the tem- perature will be constant transverse to the flow. Then, we need only solve a one-dimensional heat transport equation, to determine the temperature T(x) in the strip. Let the velocity u be the average velocity for steady laminar flow between rigid horizontal planes in the presence of a driving pressure gradient. For a Newtonian fluid, this velocity is given by (Lamb, 1932, p. 582). T2 dP 12tj dx (8) where dP/dx is the pressure gradient. We re- place (—dP/dx) by H/L' where H is the total head driving the flow, and L' is the fluid flow path length. This head results from the thermal expansion of the fluid and is given by H = pag [{ T(x)dx - J T(x)dx] L/2 0 (9) where T(x) is the temperature in the fluid. The length L in (9) must be identified with the length scale for heat conduction, i. e. L = 2h. The fluid flow length must be deter- mined from Fig. 2, resulting in ture T(x). In order to determine the total buoyant force this temperature distribution is then integrated over the length of the strip according to (9). Furthermore, equation (9) combined with the flow equation (8) yields an equation for the velocity u. As will be shown below, this equation has only the solution u = 0, unless a dimensionless number, the Ray- leigh number, exceeds a certain critical value. Thus the condition for the onset of thermal instability can be obtained on the basis of this relatively simple model. Despite the difference in approach, the simi- larities between the strip model and the Ray- leigh model should be emphasized. Both models assume laminar flow and neglect viscous dis- sipation and horizontal convection of heat. The strip model contains the additional simplifica- tions of (1) neglecting horizontal heat conduc- tion, (2) using an average flow velocity, (3) assuming the cell size on physical grounds. The essence of the two models is the same in that the flow is driven by buoyant forces aris- ing from the non-uniform density distribution and that convection occurs only if the Rayleigh number exceeds a certain critical value. Before discussing the problem of convection in two-phase systems we will demonstrate the application of the strip model in two cases which possess well-known solutions. The first case involves the homogeneous fluid layer heat- ed from below (Jeffreys, 1928) and the second a layer of an internally heated fluid (Roberts, 1967). APPLICATION TO A FLUID LAYER HEATED FROM BELOW For constant thermal conductivity and in the absence of heat sources, equation (7) reduces to d2T dT K--------ncu------= 0 (11) dx2 P dx v ' The boundary conditions are T(0) = T(L) = 0; T(L/2) = T0 (12) L' = \ + 2h —3T (10) The general method of solution with the strip model is to first determine the tempera- Due to the discontinuity of the heat flow at x = L/2, equation (11) must be solved separ- ately in the regions 0:?x:£L/2and L/2 5= xíLwe obtain 22 JÖKULL 23. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.