Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 32

Jökull - 01.12.1973, Qupperneq 32
previously. Then (57) reduces to equation (58). In (58) Ti has been replaced by the quantity is the average, steady state conduction gradient in the fluid. The expression on the right of (58) represents the critical Rayleigh number for an internally heated fluid with two phases. DISCUSSION Inequality (58) shows that the critical Ray- leigh number for a two-phase fluid is different from that for a fluid with only one phase. Basically there are two opposing effects. For a normal phase transition, the latent heat tends to promote stability by raising the critical number whereas the density difference tends to reduce stability by lowering the critical number. These effects reverse their respective roles in the case of anormal transitions. Inequality (58), then, expresses quantitatively the phase transi- tion effects which were mentioned previously. In addition to the phase transition para- meters, however, the physical constant , the depdt h, and the ratio di/h influence the critical condition. The effects of the phase transitions are not very sensitive to the ratio di/h. To simplify the discussion, the transition will be fixed at the mid-plane of the fluid layer. With di = h/2, (58) becomes, 3M 3Ap /j _ M \ 4c^xh ^pi ^ctgvh \ c^hj Defining the quantities (60) 3M M “ 4c^h (61) p , _ 3AP Ae 2Pl2agYh (62) the critical condition (60) is written 30 JÖKULL 23. ÁR R >_______________________________ (63) - l-RM + RAo (1-(4/3)Rm) The expression RM represents the stabilizing effect of the latent heat; R^g represents the destabilizing influnce of the density difference between the phases. Fig. 7 shows the variation of Rc with RM for different fixed values of R^f). It is observed that for a given Raq> tl16 critical number in- creases as RM increases. This is expected in view of the stabilizing effect of the latent heat. Also, for a fixed RM, the critical number decreases as Rao increases. This reflects the fact that as the density difference associated with the phase change increases, the phase transition assumes an increasingly important role in driving the convection. An important feature of these curves is that as RM approaches 0.75, the critical number becomes insensitive to RAo > and for Rm > 0.75, the critical number increases ex- tremely rapidly. Consequently, a condition is obtained on RM. In order for the critical number to be finite, it is necessary that hence Rm<1 M cPlh <4/3 (64) Fig. 7. Critical Rayleigh number Rc for con- vection in a normal two-phase fluid as a func- tion of Rm for various values R Aq •
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.