Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 33

Jökull - 01.12.1973, Qupperneq 33
Therefore, for convection to be possíble, for a givn parameter an upper limit is placed on the latent heat. Alternatively, for a given latent heat, (64) places a lower limit on Since is mainly a function of the heat pro- duction A, (64) sets a lower limit on A. For a wide range of values of RM and R^q , Fig. 7 shows that the critical number for a two-phase fluid is lower than that for a single phase fluid. These results agree in general with those of Schubert et al. (1970), Schubert and, Turcotte (1971) and Busse and Schubert (1971) for the simpler case of a fluid heated from below. Fig. 8 shows the corresponding curves for a transition with a negative slope. In this case Rc is plotted against | R^p | f°r various values °f j Rlt | from the equation R> 2000 •|RA9|+|RM|(l-(4/3)|RAe |) (65) where |RM| and |RAq | represent the absolute values of the expressions given by (61) and (62) respectively. It is apparent from comparing (63) with (65) that Fig. 7 and 8 are identical except that RM and R^q have been inter- changed. For a transition with negative slope the condition hence I rAo I <1 Ap Pl2dgh|v| <2/3 (66) (67) Ís obtained. This inequality may be looked upon as placing a limit on the parameter Ap /1 y | of the phase transition. The above results would be modified slightly if the transition does not occur at the mid-plane of the layer. More critical to the validity o£ the preceding analysis, however, is the assumption rnade above that \ and £ are the same for one phase and two phase fluids. On physical grounds, one would not expect the critical wavelength to change substantially. Fig. 2 o£ Busse and Schubert (1971) indicates a slight in- erease in the critical wavelength as the phase transition parameter P increases (P corresponds to the parameter R^q of the strip model). When P becomes infinite, however, \c goes to Fig. 8. Critical Rayleigh number Rc for con- vection in an anormal two-phase fluid as a function of |RAq | l°r various values |RM|. zero. Since the critical number given by (58) is not strongly dependent on \, changes is \ should not seriously affect the above results unless RAq becomes infinite. The parameter £ is also indeterminate on the strip model, and clearly the appropriate value is not the same for a fluid heated inter- nally as for a fluid heated from below. These two types of convective flow behave somewhat differently (Tritton and Zarraga, 1967). On physical grounds one would tend to select a £ value slightly in excess of 0.35, but we do not anticipate that our assumption of £ = 0.35 will result in a serious error despite the sensitivity of Rc to changes in £. Lastly we point out that \ and £ affect only the definition of RM and the value of Rc at the vertical axis. The shape of the curves in Figs. 7 and 8 would remain essentially unmodified. Therefore the strip model results appear to satisfactorily depict the principal effects of phase transitions on convec- tion. APPLICATION TO THE MANTLE We shall now apply the strip model formula (58) to estimate the effects of the olivine-spinel and the spinel-oxides phase transitions on JÖKULL 23. ÁR 31
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.