Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 40

Jökull - 01.12.1973, Qupperneq 40
Fig. 1. Well posed problem in two dimensions where m = 2. ems to the case when there is one and only one set of unknowns which solve the equations. The problem is then referred to as being well posed. The cases where (a) there are too few equations to define a unique solution, or (b) where there are too many equations to yield any solution at all, are termed as improperly posed. The former case represents the underdeter- mined systems and the latter case the over- determined systems. Lanczos (1961) has emphasized that it is quite simple to define meaningful generalized solu- tions for any finite system of linear equations regardless of whether the system is proper or improper in the above sense. The underlying ideas are readily explained in the case of only two unknowns. Let and x2 be two unknown quantities which are to be derived on the basis of m given linear equations ailxl + ai2x2 = bi’ i = 1, 2,. .., m (1) where the constants a(1, ai2, and b( are known. Degenerate cases where any two of the two- component vectors (aJ;1, ai2) are linearly de- pendent are excluded. We can now distinguish the three main cases referred to above, viz. Character of the system: (a) m = 2 well posed (b) m = 1 underdetermined (c) m > 2 overdetermined It is convenient to consider the geometrical illustrations of these cases in Figs. 1, 2, 3, and 4, where each of the equations (1) above de- fines a line in the (x1( x2) plane. In the well posed case, m = 2, illustrated in Fig. 1, the two lines 1 and 2 intersect at one and only one point S which defines the unique solution of the system. In the underdetermined case, m = 1, illustrat- ed in Fig. 2, there is oniy one line and all points on this line satisfy the given single linear equation. This line, therefore, represents a one-dimensional solution space where there is a continuum of solutions. Each point P on the line defines a vector x = (x^, x2) repres- ented by the line segment OP and which can be expressed X = x0 + s (2) where xQ is the vector OS perpendicular to the line 1 and s is an arbitrary vector SP along 1. Using the standard notation for the U-norm or the length, |x| = \/ x2i + x22 we see that the orthogonality of x0 and s implies that |x|2=|x0|2+ |s|2 (3) Fig. 2. Underdetermined problem in two dim- ensions where m = 1. 38 JÖKULL 23. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.