Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 41

Jökull - 01.12.1973, Qupperneq 41
Fig. 3. Solution of the linear program in two dimensions where m = 1. Obviously, the vector x0 has the smallest I2- norm of all vectors satisfying (1). It is unique and it determines the position of the solution space uniquely. The components of x0 there- fore respresent the least h-norm solution to the present undertermined problem and x0 can be defined as the generalized solution to the pro- blem. The square-sum or 12-norm applied above bas in some cases the disadvantage of being of bttle direct practical importance. Frequently °ne is more interested in minimizing a linear- sum or li-norm of the form (|xi| + |x2|) and solv- lng equation (1) (m = 1) with the constraints xi >0, x2 S 0 xi -f x2 = min. I his problem setting is equivalent to a pro- blem in linear programming which is very easily solved in the present case. We find that b an > a12, we can solve equation (1) for xi and insert into (4). This leads to x2 [1 — (ai2/an)] + (bi/an) = min. x2 & 0 (5) 'vhich has the solution x2 = 0, and hence xi = bi/an (6) TWs solution is illustrated graphically by the vector OS in Fig. 3. The overdetermined case m > 2 is character- ized by the presence of more than two lines in the plane. The case of m = 3 is illustrated in Fig. 4. In the general case there will be no unique common point of intersection of the lines and hence no solution to the equations. Nevertheless, a generalized solution can be de- fined in the following way. The point of inter- section between two lines in the plane is the point of least distance from the two lines. This distance is zero because the lines intersect. This concept can be generalized and carried over to the overdetermined case where m > 2. We select the point of least distance square sum from the m lines and define our generalized solution as being represented by this point. This solution will generally be unique. In the case m = 3 illustrated in Fig. 4, the solution point S is characterized by di2 + d22 + d32 = min. (7) where di, d2, and d3 are the lengths of the perpendiculars from S to the lines 1 to 3. Cases with more than two unknowns These considerations are easily extended to higher dimensions. Let i aíkxk = bi, i = 1, 2,..., m (8) k = t Fig. 4. Overdetermined problem in two dim- ensions where m = 3. JÖKULL 23. ÁR 39
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.