Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 43

Jökull - 01.12.1973, Qupperneq 43
which inserted in (10) gives AA' a = b (21) Since the matrix AA' is invertible we have a unique solution a = (AA')-i b (22) which on the basis of (20) gives the solution of our minimum problem and hence the gen- eralized solution of the underdetermined pro- blem defined by equations (10), viz. x0 = A'(AA')-i b (23) The composite matrix on the right of (23) is a generalized inverse of A. Note that since A' is n x m, AA' is m x m and, hence A'(AA')-1 is 11 x m. This operator transforms the m-vector b mto the n-vector x0. The generalized inverse sim- plifies to an ordinary inverse when m = n. To verify that x0 is orthogonal to the null-space N of A, we form the scalar product of x0 with ar>y solution vector s of (13) and apply the bilinear identity (11) s - xo = s • A'(AA')-1 b = As • (AA')-ib = 0 (24) The overdetermined, case When m > n there are too many equations to define a solution of (10). The hyperplanes defined by each of the equations have no com- mon point of intersection. As in the above case °f m = 3^ n = g, we will again define a gener- alized solution on the basis of the vector x0 whose end point S in n-space has the least distance square sum from the m hyperplanes. Since equations (10) have been normalized, x0 ls obtained as the solution of the following niinimum problem M = |Ax — b|2 = min. (25) Using standard techniques again we replace x ln (25) by the varied vector x c gx and form = 2A8X ■ Ax - 2A8x • b = 0 (26) c = 0 which with help of the adjoint A' reduces to (A'Ax - A'b) ■ 8x = 0 (27) Since 8x is an arbitrary vector the solution vector x0 is obtained from A'Ax0 = A'b (28) and hence x0 = (A'A)-1 A'b (29) which is the generalized solution of the over- determined problem. Note that A'A is n x n and (A'A)-1 A' is n x m. Again the operator on the right of (29) transforms the m-vector b into the n-vector x0. It is a generalized inverse of A which simplifies to the ordinary inverse when m = n. It is frequently of interest to introduce a bias into the above procedure. We may want to place unequal weights on the m equations in (10). The numerical bias can be expressed with the help of a diagonal m x m weight matrix W with non-zero diagonal elements and a trace (diagonal sum) equal to unity. Intro- ducing W in equation (25) we now derive the solution of I V W (Ax —b)|2 = ____ (30) | VwAx- Vwbj2 = min. which on the basis of (29) has the solution (31) [(V W A)' Vw A]-1 ( V W A)' V W b Because of the simplicity of the diagonal matrix this expression reduces to x0 = (A'WA)-1 A'Wb (32) Equation (28) indicates that the generalized solution x0 is obtained by operating on both sides of (10) with the adjoint matrix A'. Since the range of A' is orthogonal to the null-space of A, this operation negates all components of b which are in the null-space of A and thereby opens the way for inverting A. It is evident that A' is not the only matrix available for this JÖKULL 23. ÁR 41
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.