Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 44

Jökull - 01.12.1973, Qupperneq 44
purpose. We can select a matrix B with a stronger negating power than A'. This would reduce equations (10) to an underdetermined problem BAx0 = Bb (33) which would then have to be treated by the methods described above. As will be discussed below there are cases where such an overnega- tion is convenient. The adjoint A' is optimal in the sense that it negates those and only those components of b which have to be negat- ed for the inversion of A. AN EXAMPLE FROM POTENTIAL THEORY In the following we will discuss an example from potential theory which is of interest in the interpretation of marine magnetic field anomalies. These anomalis are believed to re- sult from the magnetization of thin layers of lava at the ocean floor (Carmichael, 1970). Consider a horizontal magnetic stratum X carrying a unidirectional vertically oriented magnetization of density u(S) where S are the points on X- We will place the (x, y) plane in X with the z-axis vertical. Moreover, for the purpose of simplification let u(S) depend on the x-coordinate only and let u = 0 for x out- side the interval (0, L). We have then a one- dimensional case where u(x) has a bounded support. Using MKS units we find (Grant and West, 1965) that the scalar magnetic potential v(x, z) due to X a field point (x, z) is v(x, z) - (z/2tr) j u(x')dx' Z2+ (x-x')2 (34) The vertical magnetic field is K (x, z) = - fi0 (3v/3z) (35) which can also be expressed v(x,z) = - J bz(x, z')dz' (36) AC z Assuming that the magnetic field can be ob- served in a horizontal plane located at a dist- ance h above X> the fundamental problem of magnetic field interpretation consists in deriv- ing u(x) on the basis of the observed bz(x, h). This is equivalent to solving the integral equa- tion (34) for u(x) when z = h and v(x, h) is obtained on the basis of (36). The latter step is a simple integration obtained on the basis of an outward continuation of bz(x, h) which presents no formal difficulties. Equation (34) is an integral equation of the first kind where the operation on the right is a simple convolution. Hence, the most con- venient method of solution consists in applying the Fourier transformation with respect to x to (34). Let U(k) and V(k, h) be the transforms of u(x) and v(x, h), respectively, where k is the transform variable, that is, the wave-number in the transformed space. Using ■ transform tables (.Duff and Naylor, 1966) we find that the trans- formed version of (34) is V(k,h) = (i/2)exP(-|h|k)U(k) (37) and hence U(k) = 2 exp(|h|k)V(k, h) (38) which formally represents the Fourier trans- form of the solution of (34). Unfortunately, the exponential factor on the right of (38) is unbounded as k-^=° and does not possess an inverse transform. We are therefore unable to retrieve u(x) from U(k) unless re- strictions are imposed on V(k,h) so that the product on the right of (38) can be inverted. The integral equation (34) for u(x) is simply an improperly posed mathematical problem. This is evidenced by the fact that as k-»<® the ex- ponential factor in (38) causes an unbounded magnification of the high-frequency compon- ents of v(x, h). This situation is typical for many problems in interpretation theory. Equa- tion (34) is one of the most elementary ex- amples of an improperly posed interpretation problem. The simplest and most obvious way out of this difficulty is to reject any high-frequency components of v(x, h) beyond a certain cutoff wavenumber k0. Adopting this procedure, we 42 JÖKULL 23. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.