Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 45

Jökull - 01.12.1973, Qupperneq 45
assume that v(x, h) is band-limited and that its Fourier transform satisfies the condition V(k, h) = 0 for |k| > kc (39) Mathematically, this is equivalent to multiply- ing equations (37) and (38) with a cutoff func- tion C(k, k0) = ( 1 !k! ^ k° (40) V °’ l 0 |k| > k0 v y resulting in a band-limited restriction of U(k) Ub(k) = U(k)C(k,k0) = (41) 2exp(|h|k)V(k, h)C(k, k0) The expression on the right of (41) can now be Fourier inverted by expanding the expon- ential factor in series in k and inverting term by term. The result is (see Snow, 1923 and Bodvarsson, 1971, 1973) tion analogous to the matrix operation B in equation (33). Moreover, ub(x) given by equa- tion (42) is a generalized solution in the sense of (23) of the overnegated and, therefore, under- determined problem resulting from the band- limited restriction of equation (34) expressed in its transformed version by equation (41). This becomes clear by observing that the Fourier-components of a given function be- longing to non-overlapping frequency bands are orthogonal (Papoulis, 1966). Hence, the splitt- ing of u(x) into two components u(x) = ub(x) + uh(x) (43) where ub(x) is the same band-limited restriction as above, and uh(x) contains only components with |k| > k0, leads to the following relation for the U-norms lul2 = !ubl2+luhl2 (44) ub(x): 42<- n = 0 i)" h2n 2h r —— D2n vb (x, h)---------j (2n)! 7T J yb(x'’ h)dx' h2 + (x - x')2 (42) where vb(x, h) is the band-limited restriction of v(x, h) to the frequency band |k| íj kQ and D ls the derivative with respect to x. Since the derivatives of a bounded band-limited function are bounded (Arsac, 1966) the infinite series on the right of (42) will converge for all bounded vb(x> h). The solution is well defined. The infinite series in (42) is a clear indica- tion of the improperly posed character of equa- tton (34). From the numerical point of view, series of this type are extremely unpleasant to handle, in particular, when v(x, h) is of experi- Hiental origin. In practice, as a matter of course, °nly a finite number of terms can be handled. The band-limiting approximation restricting v(x> h) to vb(x, h) has the consequence that mformation is lost and equation (34) for u(x) becomes underdetermined in much the same sense as equation (8) when m < n. Only the restriction ub(x) of u(x) can be obtained by (42). The band-limiting approximation obtain- ed by multiplying equation (38) by C(k, k0), arid resulting in equation (41), is an overnega- The band-limiting multiplication operator C(k, k0) has a null-space composed only of the function uh(x). Hence, equadon (44) can be interpreted in the same sense as the vector- norm equation (14) above. This indicates the analogy between ub(x) given by (42) and x0 given by (23). It is of interst to note that according to the sampling theorem (Arsac, 1966), a band-limited function with a maximum frequency k0 is com- pletely determined by its values at equidistant points with the spacing 7r/k0. Hence, a periodic band-limited function is completely determined by a finite number of equidistant values.We have above assumed that u(x) is of bounded support, that is, u(x) = 0 for x outside a finite interval (0, L). If h « L then for the present purpose we may extend u(x) outside (0, L) to a periodic function with a period L. The same applies to v(x, h). Both functions u(x) and v(x, h) are then totally determined by n = Lk0/7r equi- distant values. As a consequence the sampling theorem and the use of correct interpolation functions (Arsac, 1966) allow us in principle to JÖKULL 23. ÁR 43
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.