Jökull


Jökull - 01.12.1986, Blaðsíða 4

Jökull - 01.12.1986, Blaðsíða 4
indicate that these waters are precipitation that has fallen in the interior highlands of the country (Árna- son, 1976, 1977). Árnason (1976, 1977), therefore, con- cluded that the isotopic studies supported the model of Einarsson (1942, 1966). However, Bödvarsson (1982) correctly pointed out that the isotopic data did not provide any evidence of the mode of heating of the water. The temperature distribution in some drilled low- temperature systems in Iceland shows that they are convective systems and not upflow systems as would be expected from Einarsson's (1942, 1966) model (Björnsson 1980a). Thus, temperatures in deep drill- holes are lower than would be expected from knowl- edge of thermal gradient. For example, the regional gradient in Eyjafjörður is about 60°C (Sœmundsson and Fridleifsson 1980) but temperature in a deep drill- hole in the area (Laugaland) only reaches 100°C at 2800 m depth (Björnsson 1980b). In Reykjavík where the regional gradient is over 100°C/km, a temperature of only 160°C occurs at the bottom of a 3000 m deep drillhole (Gunnlaugsson, pers. comm). It has been established in numerous low-tempera- ture fields that faults and dykes control upflow zones (e.g. Einarsson 1937, Sœmundsson and Fridleifsson 1980, Georgsson et. al. 1984, 1985). Fridleifsson (1979) considered that various structural features, together with hydrostatic head, determined subsurface flow of water from the central highlands towards the coast. These structural features constitute faults, dykes and ridges of hyaloclastite formed by subglacial fissure eruptions. The model for the low-temperature activity in Ice- land initially proposed by Einarsson (1942) fails to explain the overall distribution and the intensity of this activity. The model rests on basic hydrological principles, but does not attempt to link the origin of the low-temperature activity with specific geological processes or events. This is to be contrasted with the hypothesis of Bödvarsson (1982) regarding the transi- ent nature of this activity. In the model generally ac- cepted for high-temperature geothermal activity in Iceland there is a strong genetic link between hydro- thermal and geological processes. The origin of this activity is related to intrusion of magma into the roots of central volcanic complexes (Pálmason and Sce- mundsson 1974, Arnórsson et. al. 1978, Sœmundsson and Fridleifsson 1980). Since Einarsson (1942) first proposed his model for the Iow-temperature activity in Iceland very extensive geological data have accumulated pertinent to the understanding of the low-temperature activity in the country. These data have been reviewed briefly and using them a new conceputal model has been devel- oped for the two largest low-temperature systems in the country, in Reykholtsdalur and in Upper-Árnes- sýsla. The new model favours that the heat source is magmatic and presumably located directly below the fields. The magma is assumed to have originated in the adjacent volcanic zone but intruded, probably as sheets, into the older rocks on both sides. GEOTHERMAL ACTIVITY IN REYKHOLTSDALUR AND UPPER-ÁRNESSÝ SLA The integrated natural flow from hot springs in the low-temperature fields of Iceland is estimated to be 1800 1/s (Gudmundsson and Pálmason 1982). Two- thirds of the total heat output is limited to the three largest low-temperature areas, BorgarQörður, Árnes- sýsla and Mosfellssveit (Sœmundsson and Fridleifsson 1980). These areas are all located in SW-Iceland, in Quaternary and Late-Tertiary rocks on both sides of the Reykjanes-Langjökull volcanic zone. In Borgar- fjörður natural flow from hot springs is close to 400 1/s (Georgsson et al. 1984) and far the larger part of it is confined to the Reykholtsdalur field which is of the order of 50 km2 in area. Total flow from low-tempera- ture springs in Árnessýsla is reported as 350 1/s (Arnórsson 1970) of which 250 1/s is confined to 100/km2 in Upper-Árnessýsla (Laugardalur and Biskupstungur). In both Reykholtsdalur and Upper- Árnessýsla most of the water emerges at boiling tem- perature. Chemical geothermometry indicates subsur- face temperatures of up to 150°C in Reykholtsdalur and as high as 200°C in Upper-Árnessýsla. Therefore, natural heat output from these fields can be expected to be considerably higher than indicated by water dis- charged from hot springs. The natural heat output in Reykholtsdalur and Upper-Árnessýsla is similar to that estimated by Bödvarsson (1961) for many high- temperature fields. Elaborate studies of the geothermal resource in Reykholtsdalur, described by Georgsson et al. (1984), revealed elongated anomalies of low bedrock resistiv- ity coinciding with faults striking approximately northeast-southwest. They concluded that the re- charge area was to the northeast and that the water flowed along the faults into the discharge area. Árna- son (1976) indicates a recharge area more to the east. The heat discharged by the hot spring waters is equi- valent to terrestrial heat conduction over 2000 km2 (Georgsson et al. 1984). Arnórsson (1970) and Stefánsson and Arnórsson 2
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88
Blaðsíða 89
Blaðsíða 90
Blaðsíða 91
Blaðsíða 92
Blaðsíða 93
Blaðsíða 94
Blaðsíða 95
Blaðsíða 96
Blaðsíða 97
Blaðsíða 98
Blaðsíða 99
Blaðsíða 100

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.