Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1986, Qupperneq 7

Jökull - 01.12.1986, Qupperneq 7
discharge rates from hot springs are about 15 1/s in each field and steam discharge is low. High-tempera- ture activity is the result of the formation of shallow level magma intrusions. The low surface heat dis- charge from high-temperature fields in the TL-zone is indeed suggestive, yet not conclusive, of limited high- temperature activity in this zone. It seems logic to relate the apparently limited geothermal activity in the TL-zone at present to the diminishing tension and limited volcanic activity. SUBSURFACE TEMPERATURES No deep drillholes have been sunk in the Reyk- holtsdalur and the Upper-Árnessýsla geothermal systems. It is, therefore, necessary to rely on chemical geothermometry for evaluation of the subSurface tem- perature conditions. By the approach of Arnórsson and Svavarsson (1985) to use overall water compo- sitions for geothermometry interpretation, it is found that most hot spring discharges in both areas indicate subsurface temperatures between 130°C and 150°C. For most of the waters individual geothermometers yield temperatures within a narrow range (20°C), thus giving confidence in the results. Yet, there are some discrepancies and high H2S-temperatures for the Laugarvatn springs in Upper-Árnessýsla are particu- larly noteworthy. The calculated hydrogen sulphide content in the reservoir fluid from the analysed total sulphide in the hot spring discharges indicates tem- peratures in excess of 200°C (fig. 3). Equilibration between aqueous sulphide and sul- phide minerals is approached relatively slowly in geothermal systems, especially at low temperatures. The strong supersaturation with repsect to sulphide at the temperature indicated by geothermometers other than H2S (140°C) at Laugarvatn could hardly be ac- counted for by excessive leaching. Juvenile contribu- tion by degassing of magma could, on the other hand, explain the elevated hydrogen sulphide concentra- tions. Such contribution could occur by mixing of hot gaseous fluid phase with overlying cooler geothermal water. The studies of Gunnlaugsson (1977) demon- strate that sulphur is transported from igneous intru- sions into the overlying hydrothermal systems. In two areas on opposite sides of the Reykjanes- Langjökull volcanic zone, Klausturhólar and Leirá (fig. 2), drillhole data have revealed temperatures of 160°C (1100 m depth) and 175°C (2000 m depth), respectively (Arnórsson et al. 1983, Fridleifsson et al. 1977). Chemical geothermometry indicates even higher subsurface temperatures. For example, C02 concentrations give temperatures around 200°C in Fig. 3. C02 content in well waters at Klausturhólar and Leirá and H2S content in hot spring water at Laugarvatn. The broken curves indicate C02 and H2S concentrations in equilibrated geothermal waters according to Arnórsson et al. (1983). Stars represent calculated gas concentrations at bottomhole tempera- tures for Klausturhólar and Na-K geothermometry temperatures for Leirá and Laugarvatn. The calcu- lated gas concentrations depend not only on the water composition but also on the aquifer temperature as shown by the solid curves. The intercept of the two curves gives the best estimate for reservoir tempera- tures. — Styrkur COi í borholum að Klausturhólum og Leirá og styrkur H2S í hverum á Laugarvatni. Brotnu ferlarnir sýna styrk C02 og H2S í jarðhita- vatni, sem náð hefur efnajafnvœgi við ummyndunar- steindir (skv. Stefáni Arnórssyni o.fl. 1983). Stjörnur sýna reiknaðan styrk gastegundanna við hitann í botni holunnar að Klausturhólum og við Na-K hita fyrir Leirá og Laugarvatn. Reiknaður styrkur gasteg- undanna er ekki einungis háður efnainnihaldi vatns- ins, heldur einnig hitastigi þess eins og sýnt er með heildregnu ferlunum. Skurðpunktur ferla gefur besta mat á hitastigi i jarðhitakerfunum. both areas (fig. 3). These data and those from Laugar- vatn show that there is an overlap in subsurface tem- peratures in geothermal systems lying within and out- side the active volcanic zones. RECHARGE FOR THE REYKHOLTSDALUR AND UPPER-ÁRNESSÝSLA SYSTEMS The deuterium content of hot spring discharges have been used to locate the recharge areas for the Reykholtsdalur and Upper-Árnessýsla geothermal systems (Árnason 1976). In Reykholtsdalur the geo- thermal water represents precipitation that has fallen 5
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.