Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1968, Qupperneq 26

Jökull - 01.12.1968, Qupperneq 26
(3) 3 (• — yc T dR 3t J K and this must equal the heat added through conduction and advection: k div grad T — yc v • grad 1’ — yc div (T'v') 3T = YC - 3t /, k grad T • dA v • dA 3 3t YC T dR The term yc div (T'v') is the turbulent dif- fusion and it must be connected to the time- averages of T and v in order that we can handle it. In technical fluid dynamics it is assumed that The instantaneous values of T and v can be written down as sums of time-averages and fluctuations: T = T + T'; v = v + v'. The time-averages of the fluctuations are equal to zero: TV = -ktx- 3x and corresponding for the other components. It must be emphasized that the diffusion coeffi- cients, Kt, are not constant like the conduc- tivity. With this and writing out in coordinates and rearranging we get: T' =0; v' = 0. Inserting this and taking time-averages we get: f k grad T • dA — f yc T v • dA J A *Z A _ J yc TV' • dA = f yc -J- dR (1) /, 3t The surface integrals can be transformed to volume integrals: | k div grad T dR — f yc div (T v) dR •z r R - f yc div (TÝ) dR = f yc dR. (2) J E J R 3t By making use of the continuity equation for an incompressible fluid, div v = 0, we have div (T v) = T div v + v • grad T = v • grad T; '3T 3T 3T 3T 'iT + Vx "3^ + Vy + Vz 3 / k \ 3T 3x Uc + Tx/ 3x + 3y \ yc k '*-)? 3T 3z 3 / k + , ' ( + KTz dz \ yc (4) Here the bars have been omitted as all values are time-averages. This equation will now be studied closer for the simplest case: A broad rectangular channel where the temperature is uniform transversely across the channel. With x in the flow direct- ion and z as the ordinate (z = 0 at the bottom) we have 3T/3y = 0, vy = vz = 0 and vx = v(z). It is further assumed that the velocity field is independent of the temperature field; this is bclieved to hold in swift rivers. For fully developed turbulence the velocity distribution in a broad channel is given by the well-known equation (Prandtl-Nikuradse (Brett- ing 1960)): and since equation (2) must hold for any volume the integrands must vanish: 360 JÖKULL 18. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.