Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1968, Qupperneq 28

Jökull - 01.12.1968, Qupperneq 28
X T# ~ D V. D ’ T T?' D where vm is the mean velocity and T0 is a re- presentative temperature. With this equation (9) becomes: 3T* VI 3t* F 1 / D \ \ 3T* -in í--z* 1+8.48) — dz* x \/ - 1 1 P R + P,F ■ z* (1 - z*) 3T* 3z* (11) Here the following dimensionless groups have been introduced: The Froude number: F = The Prandtl number: P : V gD v k/yc where v is the kinematic viscosity of the water. — The Prandtl number depends only on the properties of the water. The Reynolds number: R: D ■ v„ The boundary condition at the surface be- comes with dimensionless quantities: 3Tj 3z* S D ~k T~ - = N. As equation (9), (or (11)), is rather complic- ated we seek a more simple expression for practical applications. Upon integrating equa- tion (9) with respect to z, from z = 0 to z = D, we obtain: ru 3 i r i, *ál+f r k 3T 1 Z = D L yc 3z J z=o D 3T v(z) ■ —■— dz ÖX (13) In swift rivers it is known from measure- ments that the variation of T with z is very small (except in a thin layer close to the sur- face if the heat exchange with the air is great). In this case we can then assume 3T/3t and 3T/3x to be constant over the depth. With this assumption and neglecting the heat ex- change with the bottom, equation (13) becomes: 3T 3t 3T 3x ycD (14) With dimensionless quantities we obtain for (14): 3T* 3t* 3T* 3x* = N. 1 r/ (15 Here the numbers Pt and F are not present as we did not take the velocity distribution into account. For constant. S the general solution to (14) is: (16) Ns is the dimensionless Nusselt number at the surface. The boundary conditions at the bottom will be corresponding, we will denote these by Nb. From this we see that with our assumptions the water temperature is a function of several dimensionless groups: T = f (•/, I, D/z0, F, Pt, P, R, Ns, Nb). <f) (x — vt, T +---------) -- 0 V ycT)J where <J> is an arbitrary function. The solution can also by written: T (x, t) = cp (x - vt) - —^ (17) which for the characteristics x — vt = a = con- stant gives: a<o; T (x,t) = T (o, — a/v) — St/ycD. (18) a > o; T (x,t) = T (a, o) — St/ycD. (18a) In the stationary case 3T/3t = 0 and Sx T(x) = T(o) - 7cDvn (19) 362 JÖKULL 18. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.