Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1973, Qupperneq 23

Jökull - 01.12.1973, Qupperneq 23
T= 0 -----X/2 T = T0 or dT/dz = 0 Fig- 1. Two dimensional convection cell model. where c is the specific heat at constant pressure. The heat transport equation (2) has been simpli- fied so that it involves only the vertical com- ponent of the convective heat transport uzy3- The horizontal convective heat transport terms contained in (5) have been neglected. Tlie resulting linearized Rayleigh model is physically quite simple. Laminar viscous fluid wrculation is driven by a pressure gradient re- sulting from the thermal expansion of the fluid. Heat is transported vertically by conduction and convection, but thermal conduction is the °nly mode of horizontal heat transfer. In this light, we consider the model of a two-dimensional convection cell of wavelength X depicted in Fig. i. The homogeneous fluid ls confined between rigid horizontal planes separated by a distance h with tlie upper sur- face maintained at T = 0. The walls of the cell are assumed rigid and thermally insulated. It is further assumed that horizontal heat con- duction can be neglected and that the flow takes place around rigid, thermally insulating cores. This assumption simplifies the calcula- tions considerably and does not seriously alter the convection process. Two different condi- tions will be used at the lower boundary of the cell. If the fluid is heated from below, the condition at the lower surface is T = 'I’o- If the fluid is internally heated, the condition of zero heat flux, dT/dz = 0, is employed. The model in Fig. 1 is shown again in Fig. 2. The flow is assumed to circulate around the core through a channel of width t- Clearly, the stability problem presented here is of the same nature as the Rayleigh problem. Convection will not occur unless a certain critical temperature difference between the upflowing and the downflowing sections can be maintained in order to provide the required buoyancy forces. The essential difference between a two-dimen- sional Rayleigh model of fixed wavelength and the present model lies in the neglecting of the horizontal heat conduction. Mathematically, the term 32T' / 3x2 has been dropped from the perturbation equation (2). To arrive at the strip model we now make the further simplification that the convective flow is uniform about the core and the flow velocity is constant over the width t- The work- ing model for calculating the temperature then becomes that shown in Fig. 3. The cell has been cut along the dotted line (Fig. 2), and the flow channel has been stretched out as a strip. The bottom of the channel has been folded into the plane x = L/2. Fleat losses through the upper surface of the cell now place through the ends of the strip. The problem then reduces to that of determining the tem- perature distribution in a strip of length L and width t- The ends of the strip are held at T = 0; there are no heat losses through the rigid horizontal surfaces and the flow is uni- form in the x direction. For a fluid heated from below, the condition T = To exists at T = 0 X/2 T = T0 or dT/dz = 0 Fig. 2. Equivalent convection model. JÖKULL 23. ÁR 21
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.