Jökull


Jökull - 01.12.1974, Blaðsíða 20

Jökull - 01.12.1974, Blaðsíða 20
the Torfajökull area but twice as powerful with a flux density of ip = 45—50 W/m2. As volcanic eruptions have been frequent in the Grímsvötn region, a high flux density of geothermal energy is to be expected. According to Sigvaldason (1965), the presence of SO2 in the water of the jökulhlaups indicates that the base temperature beneath Grímsvötn is higher than that observed in any other higli-thermal area in Iceland. Friedman et al. (1972) estimated the strength of the Kverkfjöll geothermal area to be 1200— 2300 MW; that is 14 to 14 of the present esti- mate for Grímsvötn. The Kverkfjöll thermal area is not more than 10—20 km2 so this esti- mate would give an average flux density for Kverkfjöll which is still higher than the present one for Grímsvötn. THE MECHANISM OF JÖKULHLAUPS A model of the topography of the Grímsvötn water basin and Skeidarárjökull has been dis- cussed and some understanding of the import- ance of the geothermal area in filling the lake with water has been obtained. The mechanism of jökulhlaup triggering will now be considered. The triggering of a jökulhlaup by lifting In Grímsvötn continuous accumulation of water goes on until the water level has risen about 100 m (Fig. 3). Then a sudden cata- strophic flood occurs. Consider the distribution of the ice over- burden pressure p( = pj g H4 around the lake and the distribution of the subglacial (hydro- static) water pressure which would exist if there were a hydraulic connection between the glacier bed and the lake P = pwg (hw — hb). The sym- bol Hj represents the glacier thickness, hw re- presents the water level in Grímsvötn, hb re- presents the elevation of the glacier bottom, pj and pw denote the density of ice and water, respectively, and g represents the acceleration of gravity. It appears that the ice overburden pressure ps is greater than the possible sub- glacial water pressure P, see Figs. 13 and 14. The lake is therefore sealed and water can accumu- Iate inside Grímsvötn. Consider an ice cap with a subglacial lake at its centre, as in Fig. 4. Somewhere on the periphery of the ice cap the ice surface eleva- tion must be less than the water level in the lake. The distribution of p^ ancl P in such a model will now be considered. Since the ice cap gets thinner as the edge is approached the ice overburden pressure pj must attain its maximum value at some distance from the lake and then decrease toward the edge and finally vanish. If a hydraulic connection exists be- tween the glacier bed ancl the lake, the hydro- static subglacial water pressure is equal to P = pwg (hw — hb). So long as the subglacial water pressure P does not exceed the over- burden pressure p4 the lake will be sealed. However, if the water level rises to such an extent that the overburden pressure pj is ex- ceeded, the glacier will be lifted. The differ- ence between p^ and P represents a potential barrier around the lake. This pressure barrier has a certain width and a certain threshold value. As the water level rises in the lake, the hyd- raulic potential increases. If the water rises high enough, the thresholcl value of the poten- tial barrier will be exceeded and some water will escape through the barrier. Consider the topographical model of Gríms- vötn shown in Figs. 6, 13 and 14. A charac- teristic feature of this model is that the glacier surface is well above the Grímsvötn level for a large area north of the lake and well below the Grímsvötn level south of it. The width of the potential barrier is smallest at the south- east side of the lake. When the water level in Grímsvötn is at its lowest height, (hw) min, the barrier extends only 5 km to the head of the subglacial Skeidarárjökull valley. Due to the effect of Bárdarbunga and Kverkfjöll on the surface topography of the glacier, the shortest width of the barrier north of Gríms- vötn is 20 km north-east of Grímsfjall at the head of the subglacial Dyngjujökull valley. The topography of the glacier bottom ancl the glacier surface near the Skeiclarárjökull valley is therefore of primary interest for the investiga- tion of the potential barrier. Fortunately, the topography of this area is well known. Consider the portion of the seal south-east of Grímsvötn (Fig. 13). As the water level rises in Grímsvötn the width ancl the height of the potential barrier will be recluced. It is obvious that in our model there is no objection to the water level rising high enough for the barrier to 1 8 JÖKULL 24. ÁR
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88
Blaðsíða 89
Blaðsíða 90

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.