Jökull


Jökull - 01.12.1968, Síða 27

Jökull - 01.12.1968, Síða 27
where z0 is the equivalent sand roughness of the bottom and x is von Kármán’s constant (x ~ 0.4). vf is the friction velocity defined by Vf = V—= V gOI (6) v e where x0 is the shear stress at the bottom, o the specific mass (o = Y/g). g the acceleration of gravity, D the depth and I is the slope of the energy line. The equation (5) is not ac- curate close to the surface and it does not hold in the laminar layer at the bottom. The diffusion coefficient KTz is of the same order of magnitude as the corresponding coeffi- cient for momentum transfer, KJf (the eddy viscosity), which is defined by: v r —________________K ’ Y •' V. ~~ 3vx 3z“ the transfer of heat being similar to transfer of momentum (Reynolds analogy). An expres- sion for Km in our case is obtained as follows: Km = VX T/e dv/dz dv/dz x is the shear stress at height z: z T = T„ 1 — and from (5) With this we get D dv : Vf2 6 1 dz xz D Km = «vfz f D (7) The ratio KM/KT is the dimensionless turbu- lent Prandtl number, (8) In turbulent flow the value of Pt is close to unity at a boundary wall but decreases to ap- proximately 0.5 far away from it (Schlichting 1960, p. 499). A comparison between k/yc and KTz can now be made for a practical case, say a river with D = 2.0 m and I = 0.002. It is assumed that Pt = 0.8. For this case the following values of KTz are found: z/D 0.95 0.75 0.50 KTz [m2 s-1] 0.0094 0.0372 0.0496 k/yc is a function of the water temperature: T [°C] 0 10 k/yc [m2 s-1] 1.3 - 10-7 1.4 • 10-v It is seen that in this case the heat exchange by turbulent diffusion is about 100 000 times greater than by conduction, except very close to the surface and the bottom where KTz^> 0. KTx can not be calculated as KTz. It must be a function of z and probably ol the same order of magnitude as KTz. For sufficiently high flow velocities we have then 3 3x 3T 3T ---«v---- 3x 3x so that in many cases diffusion in the flow direction can be neglected. Doing this and in- serting the above expressions for v and KTz we get a differential equation for the water temp- erature in turbulent flow in a wide rectangular channel: 3T "aT ■+ Vf 3 3z — ln — + 8.48) — x z„ / 3x k --+ ■ xv,z 1 3T 3z YC »t The boundary condition at the surface is 3T (9) 'dz — — S; (10) where S is the heat loss froin surface per unit time and unit area. The boundary condition at the bottom is similar and in most practical cases we can neglect the heat exchange with the bottom. To find the dimensionless groups on which the solution to (9) must depend we introduce dimensionless quantities, denoted by star: JÖKULL 18. ÁR 361
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.