Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1968, Qupperneq 27

Jökull - 01.12.1968, Qupperneq 27
where z0 is the equivalent sand roughness of the bottom and x is von Kármán’s constant (x ~ 0.4). vf is the friction velocity defined by Vf = V—= V gOI (6) v e where x0 is the shear stress at the bottom, o the specific mass (o = Y/g). g the acceleration of gravity, D the depth and I is the slope of the energy line. The equation (5) is not ac- curate close to the surface and it does not hold in the laminar layer at the bottom. The diffusion coefficient KTz is of the same order of magnitude as the corresponding coeffi- cient for momentum transfer, KJf (the eddy viscosity), which is defined by: v r —________________K ’ Y •' V. ~~ 3vx 3z“ the transfer of heat being similar to transfer of momentum (Reynolds analogy). An expres- sion for Km in our case is obtained as follows: Km = VX T/e dv/dz dv/dz x is the shear stress at height z: z T = T„ 1 — and from (5) With this we get D dv : Vf2 6 1 dz xz D Km = «vfz f D (7) The ratio KM/KT is the dimensionless turbu- lent Prandtl number, (8) In turbulent flow the value of Pt is close to unity at a boundary wall but decreases to ap- proximately 0.5 far away from it (Schlichting 1960, p. 499). A comparison between k/yc and KTz can now be made for a practical case, say a river with D = 2.0 m and I = 0.002. It is assumed that Pt = 0.8. For this case the following values of KTz are found: z/D 0.95 0.75 0.50 KTz [m2 s-1] 0.0094 0.0372 0.0496 k/yc is a function of the water temperature: T [°C] 0 10 k/yc [m2 s-1] 1.3 - 10-7 1.4 • 10-v It is seen that in this case the heat exchange by turbulent diffusion is about 100 000 times greater than by conduction, except very close to the surface and the bottom where KTz^> 0. KTx can not be calculated as KTz. It must be a function of z and probably ol the same order of magnitude as KTz. For sufficiently high flow velocities we have then 3 3x 3T 3T ---«v---- 3x 3x so that in many cases diffusion in the flow direction can be neglected. Doing this and in- serting the above expressions for v and KTz we get a differential equation for the water temp- erature in turbulent flow in a wide rectangular channel: 3T "aT ■+ Vf 3 3z — ln — + 8.48) — x z„ / 3x k --+ ■ xv,z 1 3T 3z YC »t The boundary condition at the surface is 3T (9) 'dz — — S; (10) where S is the heat loss froin surface per unit time and unit area. The boundary condition at the bottom is similar and in most practical cases we can neglect the heat exchange with the bottom. To find the dimensionless groups on which the solution to (9) must depend we introduce dimensionless quantities, denoted by star: JÖKULL 18. ÁR 361
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.