Jökull


Jökull - 01.12.1974, Síða 18

Jökull - 01.12.1974, Síða 18
and as = 300 mm/yr outside the geothermal area (these estimates must be subject to later revision). An ice flux of = 0.30 km3/yr into the geothermal area plus the net surface bal- ance rate of 0.20 km3/yr over the geothermal area provide the 0.50 km3/yr of ice melted subglacially by the geothermal heat. It is inte- resting that the border of the geothermal area is in a sense an equilibrium line for the water basin. The model estimates that the ratio be- tween the accumulation area and the ablation area is about 2:1. The ice flux into the geothermal area can be compared to theoretical predictions, obtain- ed from estimates of the ice velocity through a vertical cross-section at the border -of the geo- thermal area. The velocity of a glacier due to deformation of the ice is given by (8) us-ub = BTn-H‘ n + 1 r = Hj • pjg sin a in which us and ub are the glacier surface ancl bottom velocities, respectively. The symbol T represents the shear stress at the glacier bottom, Hj denotes the glacier thickness, and n and B are constants in the ice flow law. Assumed values for the constants are n = 4.2 and B = 0.29 yr-^bar-4-2 (Paterson, 1969). For an average surface slope of a — 2 • 10~2 in the water basin and an ice thickness Hj = 600 m one obtains u — ub = 40 m/yr. For a glacier width of D = 10 km, the ice deformation flux is about 0.25 km3/yr which, added to a slightly smaller flux due to sliding at the glacier bed, might predict a total ice flux of q, = 0.4 km3/yr. This is in good agreement with the ice flux of q^ = 0.30 km3/yr determined from the mass balance model. The water flux towarcl Grimsvötn The flux of water toward the lake obtained from the surface ablation and the bottom melt- ing is given by equation (5) (the vertical drain- age of water inside the lake is not considered). If the lake area Aj is assumed to be 40 km2 (an overestimate), the following estimates are obtained: the contribution from the surface ablation is onty 0.06 km3/yr outside the geo- thermal area (A — Ag = 200 km2, as = 300 mm/ yr) and 0.06 km3/yr from that part of the geo- thermal area which is outside the lake (Ag —Aj = 60 km2, as = Í000 mm/yr). There is no sur- face drainage in the water basin. The entire water flux of 0.12 km3/yr is transported through interglacial waterways down to the glacier bed or directly into the lake. Less than 0.01 km3/yr of this water is carried into the lake by the moving ice. No moulins or large channels are visible on the glacier surface. A water table has been observed at about 35 m depth. A water flux of 0.12 km3/yr seems to be driven by a sloping water table through the intergranular vein system. The flow is ap- proximately liorizontal and the vertical cross section is about 6 km2. The specific discharge is about 20 m/yr. According to Nye and Frank (1973) this flow would require a fractional volume of veins of 5 • 10-3. The mean velocity of the water would be 4 km/yr. The time taken for the water to flow the 20 km from Bárclar- bunga to Grímsvötn would be about 5 years. The permeability of the glacier can be estim- ated by assuming that Darcy’s law is valid. Making the approximation that the hydraulic gradient is equal to the glacier surface slope (-2 • ÍO-2) one obtains a permeability of k = 6 darcy. This value corresponds to an aquifer of very fine sand. The meltwater contribution from the geo- thermal area is about 0.30 km3/yr as the aver- age subglacial ablation rate is ag = 5 m/yr (melting 0.50 km3/yr inside an area of Ag = 100 km2). According to equations (1) and (2), a uniform water sheet of the thickness of d = 4 • 10~3 m would be required to transport a water flux of 0.30 km3/yr if the average glacier surface slope is yhs = — 2 • 10-2 and the basin width is D = 10-20 km. The concentration time of the drainage basin would be about 3 days. These high values required for the water sheet thickness might throw some doubt on whether all the subglacial water actually could flow in a water sheet. The alternative is that the water mainly drains by a channef system (cf. Nye, 1973; Röthlisberger, 1972). The extent and flux density of the geothermal area A geothermal area of Ag = 100 km2, as sug- gested in the present paper on the basis of the mass balance study, would inclucle the entire 1 6 JÖKULL 24. ÁR
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.