Jökull


Jökull - 01.06.2000, Blaðsíða 22

Jökull - 01.06.2000, Blaðsíða 22
Fiona S. Tweed HISTORY OF ICE-DAMMED LAKES IN JÖKULSÁRGIL AND THE POTENTIAL FOR ICE-DAMMED LAKE FORMATION Sólheimasandur and Skógasandur (Figure 1) to the south of Sólheimajökull are primarily composed of sediments from jökulhlaups induced both by vul- canological activity and by the outbursts of ice- marginal ice-dammed lakes (Einarsson et al. 1980; Maizels, 1991). Water issuing from Jökulsárgilsjökull and the surrounding valley slopes has previously been dammed by Sólheimajökull, forming an ice-dammed lake in Jökulsárgil. Árni Magnússon’s account of Sól- heimajökull given in Chorographia Islandica, c. 1705 (summarized by Thorarinsson, 1939) describes an ice- dammed lake in Jökulsárgil which drained every ye- ar. An ice-dammed lake at the site is also marked on the Danish General Staff map of 1904, during a period when Sólheimajökull dammed the Jökulsárgil canyon, the ice front terminating close to the end of the Fjallgil canyon (Figure 2). The lake was subst- antial enough to appear in Thorarinsson’s (1939) table of the largest lakes in Iceland to have been dammed in historical times, covering an area of 0.2 km2. Thor- arinsson (1939) also cites Jökulsá as one of the most dangerous of the Icelandic glacial rivers, because of the jökulhlaups that occurred at this time. According to Sigurðsson (personal communication, 1990), jökul- hlaups from Jökulsárgil were frequent during the first third of this century, possibly happening every year. The last known occurrences of jökulhlaups from Jök- ulsárgil during this time took place in the summer of 1936, based on accounts from Einar H. Einarsson, a farmer at Skammadalshóll, Mýrdalur. Sólheimajökull then receded, the potential for damming up the Jök- ulsárgil waters was lost and jökulhlaups ceased. However, the glacier began to advance again in the late 1960s and has gradually blocked off clear access for the water from Jökulsárgil. The river has been flowing from Jökulsárgil under Sólheimajökull as the glacier has advanced across the valley, a bedrock obstruction to the west forcing the snout southwards (Figure 2). Observations made from 1989-1991 and again in 1996 indicate that the river maintains a tunn- el through the glacier and probably does so for most of the year. If the glacier sustains its current position or continues to advance, it is likely that the tunnel could seal periodically and an ice-dammed lake may form in the valley again, giving rise to the potential for jök- ulhlaups. The conditions required for closure of the tunnel can be ascertained through the application of models of ice conduit dynamics. ICE CONDUIT DYNAMICS - PROCESSES AND PREDICTIVE MODELS A number of processes operate in ice conduits that theoretically govern their open/closed status. Water flowing through conduits enlarges the cross-sectional area by melting of ice from the tunnel walls. This process is discussed by Liestpl (1956), Röthlisberger (1972), Shreve (1972), Weertman (1972), Nye (1976) and Lliboutry (1983). The expansion rate under this process is generally dependent on the slope of the tunnel, the water temperature and the flow rate of water passing through the tunnel. Hooke (1984) sug- gests that subglacial conduits are not always full of water, and provides a model to predict melt rates from ice tunnel walls under situations of open channel flow at atmospheric pressure, rather than under conditions of pressure conduit flow operating in full tunnels. Various conduit closure mechanisms compensa- te for this melt-widening process by decreasing the cross-sectional area of the tunnel. Conduits have the capacity to close by deformation as ice deforms und- er its own weight (Nye, 1953). The rate at which the ice deforms is primarily dependent on the thickness of ice above the tunnel as this controls the over- burden pressure. Nye’s (1953) model, usually used in some form to calculate tunnel closure rates, implies that conduits are circular in cross-sectional form and bounded solely by ice; in reality this presupposition is almost always challenged by the nature of subglacial conduits which deviate markedly from this idealised cross-sectional shape. An additional ice conduit closure effect is discus- sed by Shreve (1972) and Jones et al. (1985), who comment on the accumulation of frazil ice onto tunn- el walls with the onset of sub-zero temperatures. This 20 JÖKULL No. 48
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88
Blaðsíða 89
Blaðsíða 90
Blaðsíða 91
Blaðsíða 92

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.