Jökull


Jökull - 01.06.2000, Blaðsíða 42

Jökull - 01.06.2000, Blaðsíða 42
Foulger and Field The total error estimated from the first three sources is shown in Figure 6d. These estimated err- ors are conservative and would scale up or down if the true errors in the LET model and the Bouguer density are larger. The error field has an RMS Bouguer anom- aly of 1.48 mGal. The Comparing Figures 6c and 6d, the main area of discrepancy is a zone of residual low gravity corresponding to the Ftengill system and the northern part of the Hrómundartindur system. APPLICATION TO THE KRAFLA AREA A Bouguer reduction density of 2,300 kg/m3 was used by Schleusener et al. (1976) and Karlsdóttir et al. (1978). A Bouguer density of 2,300 kg/m3 was also obtained for the Krafla area using the Parasnis met- hod. This value was thus used in the present study. The Bouguer anomaly field is somewhat complicated (Figure 7a) and thus a value for the regional gradient of 0.5 mGal/km taken from Schleusener et al. (1976) was subtracted from the data (Figure 6b). The Bougu- er anomaly field was then normalised to zero by add- ing the appropriate constant value to all stations. In calculating the simulated gravity field from the LET model, the poorest resolved parts were not inclu- ded since they represented a relatively large part of the study volume. The part of the Hengill-Grensdalur stu- dy volume that was poorly resolved was much smaller in comparison. Because the gravity station spacing was small in the Kraíla area, a lot of detail is seen that cannot be reproduced by modelling the LET model, which is only reliable below sea level, i.e. ~500 m below the surface. For this reason, the simulated and obser- ved Bouguer anomaly fields upward continued to 1 km above sea level are compared. The gravity mea- surements were resampled onto a 200 x 200 m grid to prevent instabilities in the continuation process. The observed and simulated Bouguer anomaly maps are shown in Figure 8. The amplitudes of the anomalies in each are about the same, being about ±1 mGal in the observed field and ±1.5 mGal in the simulated field. The first-order features in the obser- ved field are gravity highs at the W, SW and NE parts of the caldera rim and at Leirhnjúkur and low gravity at the N caldera rim and S of the caldera. The simula- ted field is characterised by gravity highs at the W and NE caldera rims and low gravity S of the caldera. The observed and simulated fields correlate to some extent. The gravity highs at the W and NE of the caldera rim and low gravity S of the caldera are common to both fields. However, the gravity highs in the observed field at the SW caldera rim and at Leirhnjúkur are not reproduced in the simulated field. On the whole the correlation is poorer than for the Hengill-Grensdalur area. Despite the upward continuation, the two fields are dominated by anomalies which are most likely caused by bodies at different depths. The observed field is dominated by anomalies with half-widths of up to ~ 1 km, which roughly corresponds to the maxim- um depths to the centres of the causative bodies (Bott and Smith, 1958). This suggests that the maximum depths to the tops of the bodies causing the observed gravity anomalies may be approximately at sea level. The main high-gravity anomalies in the simulated field, on the other hand, are caused by deeper bodies, as the LET has virtually no resolution at shallow depths. Subtracting the simulated field from the obser- ved did not significantly decrease the RMS anomaly. For this reason, the observed and simulated fields are not very comparable and we used a different approach in our joint analysis from that used with the Hengill- Grensdalur data. An estimate of the maximum depth to the causati- ve bodies for the observed field was made using the spectral method of Granser et al. (1989). This method utilises the equation lnJ5(k) = [A0(k)]2 — 2|k|^o where -E(k) is the power spectrum, Aq (k) is the spectrum continued to the maximum source depth, k is the wavenumber vector and Zq is the maximum depth to the causative bodies. This equation exploits the fact that gravity anom- aly pattems are largely determined by the depths and volumes of their causative bodies rather than by details of their boundaries. It is strictly valid for situations where there are large numbers of bodies, though in practice it is found to work well for cases where there are no more than five or six bodies 40 JÖKULL No. 48
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88
Blaðsíða 89
Blaðsíða 90
Blaðsíða 91
Blaðsíða 92

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.