Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2009, Qupperneq 5

Jökull - 01.01.2009, Qupperneq 5
Langjökull, energy balance and degree-day models Hd = !1cpk20u(z) T (z)" T (zT ) (ln(z/z0) + # zL)(ln(z/zT ) + # z L ) (6) and Hl =L"k20u(z)(0.622 !1 P )· e(z) " e(zQ) (ln(z/z0) + # zL)(ln(z/zQ) + # z L) (7) where T (z), u(z), and e(z) are the air temperature in !C, the wind speed in m s"1 and the vapour pres- sure in Pa, respectively, at a height z above the sur- face. The roughness length for velocity (z0) is de- fined as the height at which the wind speed is zero, and for temperature (zT ) and water vapour (zQ) as the heights at which the semi-logarithmic temperature and water vapour profiles extrapolate to the surface value. Once z0 is known, zT and zQ were estimated as suggested by Andreas (1987). On a melting surface, T (zT ) $ 0!C and e(zQ) $ 611.213 Pa (e. g. Oke, 1987). The parameter k0 = 0.4 is the von Kármán constant, cp = 1010 J kg"1 K"1 is the specific heat capacity of air under constant pressure,L" = 2.5 ·106 J kg"1 is the specific latent heat of evaporation. The density of the air is included as !1 = !0(P/P0), in which !0 = 1.29 kg m"3, P0 = 1.013 · 105 Pa, and P is the air pressure in Pa, estimated with Eq. 1. The Monin-Obukhov length (e. g. Munro, 1989; Björns- son, 1972) is expressed for one-level measurements and when z >> z0 as L = "A + 1 B (8) assuming A = #z/(ln(z) " ln(z0)) and B = (g/T0)(T (z)/u2(z))(ln(z) " ln(z0)), where g = 9.8 m s"2 is the acceleration of gravity. Published values for the empirical stability correction constant # are typically !5 to 8 (e. g. Dyer, 1974; Högström, 1988, 1996), but variations within this range only cause a small uncertainty in the calculated sensible heat flux (Munro, 1989). This is supported by our energy balance calculations that show the same to be relevant for the latent heat flux. Here, # = 7 was chosen as a practical approximation for both Hd and Hl. We assume that the z0-values in Table 2, constant with time and only varying with the surface type, are appropriate for the presented study. The values are in a close agreement with more accurately estimated z0-values of Brock et al. (2006), derived by microto- pographic and wind profile measurements at the Haut Glacier d’Arolla, Switzerland. Typically z0 is in the range of 1–10mm for glacier firn and ice (e. g. Björns- son, 1972; Moore, 1983; Morris, 1989; Greuell and Konzelmann, 1994; Braithwaite, 1995b; Hock and Holmgren, 1996; Brock et al., 2006), but values up to 7–10 cm have been reported for the rough lower- most ablation areas of Vatnajökull ice cap in Iceland (Smeets et al., 1999). Generally, the temporal vari- ation of z0 during the ablation season is unclear (e. g. Brock et al., 2006), but Denby and Smeets (2000) did not record any variations in z0 for ice over several months on southern Vatnajökull. Table 2: Applied values of surface roughness (z0). – Hrjúfleikastuðull jökulyfirborðs. z0 ln(z0) mm New snow ! 0.1 -9.2 Melting snow/firn ! 2 -6.2 Ice in ablation zone ! 10 -4.6 The selected z0-values gave in general a good fit between the derived values of Mm (Eq. 3) and Mc (Eq. 4). Varying z0 from 1 to 14 mm in our calcula- tions alters the total melting energy at most by 3% at G1100, and by 7% at G500 when changing z 0 from 1 to 7 cm. The high consistency between the derived Mc andMm values (e. g. Figure 2b) indicates that the sonic echo sounder satisfactorily describes the cumu- lative daily melting rates despite the rather high un- certainty of the sonic echo sounder (Table 1). Up to 95% of the daily variation inMm is described byMc, and the standard deviation of the difference between daily values of Mc and Mm is 33 and 20 W m"2 at JÖKULL No. 59 5
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.