Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2009, Qupperneq 9

Jökull - 01.01.2009, Qupperneq 9
Langjökull, energy balance and degree-day models station according to the 2004 SPOT5 images. Albedo below 0.1 has also been observed at glacier outlets of the nearby Vatnajökull ice cap (e. g. Lister, 1959; Rei- jmer et al., 1999; Guðmundsson et al., 2005), but is in that case mainly related to exposed volcanic tephra. At G1100, albedo declined gradually through the ab- lation seasons from 0.8–0.9 to 0.5–0.6, but jumped rapidly down to 0.4 when the previous year’s sum- mer surface was exposed around the middle of Au- gust 2001 and 2003 and the beginning of September 2004. Due to increased turbulent fluxes and reduced solar radiation, the relative contribution of net radi- ation decreased steadily throughout the summers in spite of the declining albedo. Frequent passage of low-pressure systems over Iceland results in Septem- ber being windier than the summer months of June to August. Highmelt rates were producedby eddy fluxes during the warm September months of 2001 and 2002 (Figure 3a-b). All the energy components supplied to the melting increased downglacier (Figure 5), the net long-wave radiation due to higher cloud cover and the net short- wave radiation as a result of lower albedo. Turbulent fluxes were maintained by down slope glacier winds and high air temperatures; wind directional constan- cies were 0.6 (in G500) and 0.5 (in G1100) where 0 means wind blowing equally from all directions and 1 wind solely down the steepest slope (e. g. Björnsson et al., 2005). The relative contribution of the net radia- tion components to melting was on average!60–70% in the ablation area (Figure 5b). The performance of degree-day models Daily melting was calculated with the degree-models (DDM1 and DDM2) at stakes and the two weather stations on the Hagafellsjökull outlet 2001–2005 (Fig- ure 1), using the ddf -parameters in Table 3. Although not describing the physicalmelt processes, the degree- day models simulated annual and seasonal variations in the ablation at G500 and G1100 reasonably (Figure 6). The most successful degree-day predictions were obtained by applying temperature observations away from the glacier (TS) using the constant wet adiabatic lapse rate ($), rather than temperatures observed on the glacier itself (TG). Lang (1968) concluded the same by investigating a small drainage basin of the Aletschgletscher glacier, Switzerland. This is shown in our data by correlations and residuals of both daily melting rates obtained with Eq. 5 (Table 4 and Figure 4c) and annual summer balance (Figure 6d-e). This Figure 5. Variation of weather pa- rameters, observed winter (bW ) and summer (bS) balances as well as the energy budget dur- ing days of melting (Mc # 0), along the profile in Figure 1. The values are averages over the en- tire ablation season 2004. ELA and GT: altitude of the equilib- rium line and the glacier ter- minus, respectively, in the year 2004. The lower x-axis in (b) shows the power supplied for melting and the upper the corre- sponding water equivalent units. – Veðurþættir og orkubúskapur í veðurstöðvum og mælistikum á og við jökulinn. JÖKULL No. 59 9
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.