Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2009, Qupperneq 12

Jökull - 01.01.2009, Qupperneq 12
Guðmundsson et al. Figure 7. Observed and predicted (with DDM1 and DDM2) summer balance (b S) at locations of stakes at Hagafellsjökull, from 2001–2005. The predicted b S is not corrected for snow that falls and melts within the summer. – Reynslubundin líkön borin saman við sumarleysingu í mælistikum. (errors in Table 3) are identical for ddf1 and ddf2 at G1100 but substantially higher for ddf1 than ddf2 at the lower G500. One explanation for the increased ddf2snow downglacier could be the earlier timing of the snow/ice transition at lower elevations, resulting in higher incident solar radiation falling on a surface with already reduced albedo, and hence higher ab- sorbed solar radiation, during the period of parameter optimisation. SPOT5 images show that the low albedo for ice at G500 (" = 0.07), reflected as high ddf2ice (Table 3), reaches only to elevation !100 m above the station. The ice at 700–1000 m a. s. l. is much cleaner (" $ 0.35), resulting in stable ddf2ice (Table 3). The ddf2 values in Table 3 are close to being the same as previously found for northeastern Vatnajökull and northern Hofsjökull ice caps, Iceland (Figure 1), by using energy balance observations (Guðmundsson et al., 2003) and mass balance observations on stakes (Jóhannesson et al., 1995), respectively. The degree- day parameter was found to be slightly higher for ice on northern Hofsjökull than on southern Langjökull. To investigate the seasonal sensitivity of the ddf - parameters during unchanged surface conditions, we used the observedweather parameters along with con- stant albedo values of 0.1 to 0.9 for the period of May through September at G1100 and G500, and op- timised the ddf -parameters separately for each of the months and each albedo value (black lines in Figure 8). The lower solar radiation generally resulted in reduced degree-day factors during unchanged surface conditions, indicating that the degree-day factors are sensitive to seasonal changes in solar radiation; this is particularly evident at the higher station G1100. The high ddf -parameters optimised for May (black lines in Figure 8) can be explained by the relatively strong contribution of net radiation to melting during that month. The impact of the abrupt transition from snow to ice/firn depends on its timing during the summer. For example, a drop in the albedo at G1100 from 0.5 to 0.3 in June-July would increase ddf1 from!17 mm to 21 mm per !C, but the same decline in albedo dur- ing July-August would result in unchanged ddf1 (Fig- ure 8a). The parameter ddf2 has a lower value, varies more slightly and is less sensitive to changes in the weather parameters and to the timing of the snow-ice transition than ddf1 (black lines in Figure 8); hence, ddf2 comes nearer to depending solely on conditions at the glacier surface. The typically strong contribu- tion of net radiation in May affects ddf2 more than ddf1, but occurrence of the strong winds and relatively high temperatures in September affected ddf1, but not ddf2 (thick gray lines in Figure 8a,c). A justification for assuming time-independent degree-day factors, varying only with surface condi- tions (snow or ice), is that the reduced solar radiation and increased heat fluxes as summer proceeds jointly counteract the lowering of albedo, which explains the stability with time in the monthly values for ddf1 and ddf2 at both stations obtained by using the observed albedo values (thick grey lines in Figure 8). Our results indicate that the accuracy of degree- day models can be improved by accounting for the 12 JÖKULL No. 59
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.