Náttúrufræðingurinn

Árgangur

Náttúrufræðingurinn - 2011, Síða 45

Náttúrufræðingurinn - 2011, Síða 45
97 Tímarit Hins íslenska náttúrufræðifélags Lokaorð Nú er þekkt að háorkugeislun getur valdið krabbameini, hjarta- og æðasjúkdómum, ófrjósemi og fleiri veikindum og vandamálum. Frekari rannsókna er þörf til þess að skilgreina betur áhættu tengda geislavirkum samsætum og ann- arri geislun. Umhverfisgeislun hefur aukist síðustu áratugi vegna þynn- ingar ósonlagsins, kjarnorkutilrauna, -úrgangs og -slysa, fyrir utan aukna almenningseign á raftækjum sem einnig gefa frá sér geislun. Hafa þarf í huga að hvort sem rætt er um geislavirkar samsætur í náttúrunni, röntgengeisla notaða í læknisfræði- legum tilgangi eða geislameðferðir með háorkugeislun, þá eiga þessar mismunandi tegundir geislunar það sameiginlegt að þær geta breytt erfðaefni og leitt til frumudauða eða krabbameinsmyndunar. Þessi áhrif geta nýst í læknisfræðilegum tilgangi ef rétt er farið með þau, en án grunnrannsókna á sviði geisl- unar og krabbameinslækninga fæst ekki kunnátta til þess. Stór þekk- ingargrunnur hefur þegar skapast og verið notaður til að móta sam- eiginlegar starfsreglur fyrir kjarn- orkuver og alla starfsemi sem hefur í för með sér geislunarhættu fyrir fólk. Þessi þekkingargrunnur nýttist vel í Fukushima, þar sem stjórnvöld gátu brugðist hratt og vel við til þess að vernda almenning fyrir geislavirkum efnum í kjölfar spreng- inganna sem þar urðu. Þó vantar enn miklar upplýsingar og þá sérstak- lega varðandi áhrif lágra skammta háorkugeislunar þar sem þau koma seint fram og aðrir umhverfisþættir spila einnig inn í. Summary Biological effects of radiation – Where and how By now we know that high-energy radiation can cause cancer, heart dis- eases, infertility and other illnesses. In the last decades, environmental radia- tion has increased due to the depletion of the ozone layer, nuclear tests, -waste and -accidents, as well as an in- creasing number of radiation emitting electronics in public use. More re- search is needed to define the risk related to radiation, and it is important to remember that the different ionising radiation such as from the naturally oc- curring radionucleides, X-ray for diag- nostic purposes and γ rays in radiation therapy can all ionize and change mol- ecules such as DNA and thus cause mutations, cell death or even cancer. Ionising radiation can be used for med- ical purposes if it is used correctly, but without basic research in the field of radiation and dosimetry the knowl- edge needed for further progress and increased safety will not be obtained. A large knowledge base has already ac- cumulated and is now used through a system of radiation protection to create routine work rules for nuclear power plants and every operation concerning ionising radiation. The knowledge al- ready obtained on the effect of radia- tion on the environment and the hu- man body proved recently very useful in Fukushima to limit public exposure to external and internal radiation, upon the nuclear accident which occurred in March this year. Yet more research is needed for a clearer picture of the ra- diation damage on DNA and its effect on humans. Heim ild ir Jackson, S.P. 2002. Sensing and repairing DNA double-strand breaks – 1. commentary. Carcinogenesis 23. 687–696. Khanna, K.K. & Jackson, S.P. 2001. DNA double-strand breaks: Signaling, 2. repair and the cancer connection. Nature Genetics 27. 247–254. Richardson, C. & Jasin, M. 2000. Frequent chromosomal translocations 3. induced by DNA double-strand breaks. Nature 405. 697–700. Rich, T., Allen, R.L. & Wyllie, A.H. 2000. Defying death after DNA damage. 4. Nature 407. 777–783. Lengauer, C., Kinzler, K.W. & Vogelstein, B. 1998. Genetic instabilities in 5. human cancers. Nature 396. 643–649. Abdoul-Carime, H., Gohlke, S., Fischbach, E., Scheike, J. & Illenberger, E. 6. 2004. Thymine excision from DNA by subexcitation electrons. Chemical Physics Letters 387. 267–270. Dizdaroglu, M., Jaruga, P., Birincioglu, M. & Rodriguez, H. 2002. Free 7. radical-induced damage to DNA: Mechanisms and measurement. Free Radical Biology and Medicine 32. 1102–1115. Breen, A.P. & Murphy, J.A. 1995. Reactions of oxyl radicals with DNA. 8. Free Radical Biology and Medicine 18. 1033–1077. Illenberger, E., Scheunemann, H.U. & Baumgartel, H. 1978. Fragmenta-9. tion of halomethanes under impact with low-energy (0–10ev) mono- chromatic electrons. Berichte der Bunsen-Gesellschaft-Physical Chem- istry Chemical Physics 82. 1154–1158. Oddur Ingólfsson, Weik, F. & Illenberger, E. 1996. The reactivity of slow 10. electrons with molecules at different degrees of aggregation: Gas phase, clusters and condensed phase. International Journal of Mass Spectrom- etry and Ion Processes 155. 1–68. Boudaiffa, B., Cloutier, P., Hunting, D., Huels, M.A. & Sanche, L. 2000. 11. Resonant formation of DNA strand breaks by low-energy (3 to 20 ev) electrons. Science 287. 1658–1660. Martin, F., Burrow, P.D., Cai, Z.L., Cloutier, P., Hunting, D. & Sanche, L. 12. 2004. DNA strand breaks induced by 0–4 ev electrons: The role of shape resonances. Physical Review Letters 93. Sanche, L. 2005. Low energy electron-driven damage in biomolecules. 13. European Physical Journal D 35. 367–390. Mauracher, A., Denifl, S., Aleem, A., Wendt, N., Zappa, F., Cicman, P., 14. Probst, M., Mark, T.D., Scheier, P., Helga Dögg Flosadóttir, Oddur Ing- ólfsson & Illenberger, E. 2007. Dissociative electron attachment to gas phase glycine: Exploring the decomposition pathways by mass separa- tion of isobaric fragment anions. Physical Chemistry Chemical Physics 9. 5680–5685. Diem, E., Schwarz, C., Adlkofer, F., Jahn, O. & Rudiger, H. 2005. Non-15. thermal DNA breakage by mobile-phone radiation (1800 mhz) in human fibroblasts and in transformed gfsh-r17 rat granulosa cells in vitro. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 583. 178–183. Moulder, J.E., Foster, K.R., Erdreich, L.S. & Mcnamee, J.P. 2005. Mobile 16. phones, mobile phone base stations and cancer: A review. International Journal of Radiation Biology 81. 189–203. Sannino, A., Di Costanzo, G., Brescia, F., Sarti, M., Zeni, O., Juutilainen, 17. J. & Scarfi, M.R. 2009. Human fibroblasts and 900 mhz radiofrequency radiation: Evaluation of DNA damage after exposure and co-exposure to 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5h)-furanone (mx). Radiation Research 171. 743–751. Sannino, A., Sarti, M., Reddy, S.B., Prihoda, T.J., Vijayalaxmi & Scarfi, 18. M.R. 2009. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation. Radiation Research 171. 735–742. Schwarz, C., Kratochvil, E., Pilger, A., Kuster, N., Adlkofer, F. & Rudi-19. ger, H.W. 2008. Radiofrequency electromagnetic fields (umts, 1,950 mhz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes. International Archives of Occupational and Environmen- tal Health 81. 755–767. Heikkinen, P., Ernst, H., Huuskonen, H., Komulainen, H., Kumlin, T., 20. Maki-Paakkanen, J., Puranen, L. & Juutilainen, J. 2006. No effects of radiofrequency radiation on 3-chloro-4-(dichloromethyl)-5-hydroxy- 2(5h)-furanone-induced tumorigenesis in female wistar rats. Radiation Research 166. 397–408. Verschaeve, L., Heikkinen, P., Verheyen, G., Van Gorp, U., Boonen, E., 21. Plaetse, F.V., Maes, A., Kumlin, T., Maki-Paakkanen, J., Puranen, L. & Juutilainen, J. 2006. Investigation of co-genotoxic effects of radiofre- quency electromagnetic fields in vivo. Radiation Research 165. 598–607. 81_2#profork070711.indd 97 7/8/11 7:42:01 AM

x

Náttúrufræðingurinn

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Náttúrufræðingurinn
https://timarit.is/publication/337

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.