Jökull


Jökull - 01.12.1976, Blaðsíða 33

Jökull - 01.12.1976, Blaðsíða 33
INTRODUCTION The alteration and the overall mineralogy of the hydrothermally altered basaltic rocks in a 1750 m deep section through the Reykjanes geothermal area has been described in a pre- vious paper (Tómasson and Kristmannsdóttir, 1972). In Fig. 1 the distribution of clay minerals with depth in three of these drillholes is shown. The clay minerals formed were by X-ray identi- fication found to be smectites in the uppermost cooler parts (at rock temperature below 200 °C) and chlorites in the lower part of the section. An intermediate zone of randomly mixed-layer smectite/chlorite minerals bridges the two main zones (in the temperature interval 200—270 °C). Normal non-swelling chlorite is found beneath this depth, but the swelling chlorite is found together with it to the deepest levels reached by drilling. In Table 1 is shown the classification of the clay minerals from X- ray diffraction analyses. The mixed-layer min- erals of chlorite and smectite are irregularly interstratified and their diffraction peaks are often broad and without a distinct maxima. The swelling chlorites are divided into four main types, but minerals showing intermediate characteristics have been found. The thermally instable chlorite 3 and chlorite 5 were classified mainly on basis of their swelling abilities being similar to the two thermally stable types and their occurrence together with them. The struc- ture of those swelling, chlorite like minerals and their relation to the other clay minerals was uncertain after the first study by X-ray diffraction methods. Optical observations suggest that the clay minerals are all Fe-rich. The optical properties of the mixed-layer minerals and the swelling chlorites are mostly rather similar but very variable from one sample to another. No clear correlation between microscopic observation and results from X-ray diffraction analyses could be obtained for those minerals. Due to these features it was suggested that a process of gradual and continuous chloritiza- tion of the smectites did happen by increasing temperature without any major chemical re- arrangement of the silicate layers themselves. The aim of the present study was to investigate the clay minerals, mainly the mixed-layer minerals and swelling chlorites by differential thermal analysis and infrared spectroscopic methods and to find out whether these features changed abruptly or gradually and study their relations to the smectite and normal chlorite minerals. A main difficulty in preparing the samples for this study was to obtain nearly pure clay mineral fractions from the rock. Some of the clay mineral types occur only together with one or two of the other types. In some cases a mixture of two or three minerals was there- fore obtained in the clay fraction. A sample containing only one single clay mineral, and large enough for the differential thermal ana- lyser was obtained of the smectite, a mixed- layer smectite/chlorite mineral and the swelling chlorite of group 2 (see Table 1). A sample of nearly pure swelling chlorite 5 was also pre- pared. All the samples contained small quanti- ties of non clay minerals, mainly plagioclase, calcite, quartz and opaques. The quantity of the non clay minerals was in most samples 1— 5%. The purity of the samples was checked by X-ray diffraction scanning. RESULTS OF THE DIFFERENTIAL THERMAL ANALYSIS (DTA) In Fig. 2 are shown some characteristic DTA patterns of the samples. A striking feature is the similarity of the curves for swelling chlorite and the mixed-layer minerals. Mixtures of smectite and swelling chlorite, mixed-layer minerals and swelling chlorite also show closely similar patterns. The main peaks appear at practically the same temperatures in all instances, only their relative intensities are different. The differ- ential thermal analyses show that the “chlori- tic” minerals all contain structural bound water in varying degree. A rather strong and well defined dehydroxylation peak occurs at 590—600 °C. An endothermic peak at about 830 °C, which is probably due to dehydration of the mica layer, has lower intensity than the dehydroxylation peak, but is quite well defined. It is followed immediately by an exothermic peak at about 860 °C. The DTA curves for the chloritic minerals are quite similar to curves of “corrensite” (Mackenzie, 1957a). The similarity JÖKULL 26. ÁR 31
Blaðsíða 1
Blaðsíða 2
Blaðsíða 3
Blaðsíða 4
Blaðsíða 5
Blaðsíða 6
Blaðsíða 7
Blaðsíða 8
Blaðsíða 9
Blaðsíða 10
Blaðsíða 11
Blaðsíða 12
Blaðsíða 13
Blaðsíða 14
Blaðsíða 15
Blaðsíða 16
Blaðsíða 17
Blaðsíða 18
Blaðsíða 19
Blaðsíða 20
Blaðsíða 21
Blaðsíða 22
Blaðsíða 23
Blaðsíða 24
Blaðsíða 25
Blaðsíða 26
Blaðsíða 27
Blaðsíða 28
Blaðsíða 29
Blaðsíða 30
Blaðsíða 31
Blaðsíða 32
Blaðsíða 33
Blaðsíða 34
Blaðsíða 35
Blaðsíða 36
Blaðsíða 37
Blaðsíða 38
Blaðsíða 39
Blaðsíða 40
Blaðsíða 41
Blaðsíða 42
Blaðsíða 43
Blaðsíða 44
Blaðsíða 45
Blaðsíða 46
Blaðsíða 47
Blaðsíða 48
Blaðsíða 49
Blaðsíða 50
Blaðsíða 51
Blaðsíða 52
Blaðsíða 53
Blaðsíða 54
Blaðsíða 55
Blaðsíða 56
Blaðsíða 57
Blaðsíða 58
Blaðsíða 59
Blaðsíða 60
Blaðsíða 61
Blaðsíða 62
Blaðsíða 63
Blaðsíða 64
Blaðsíða 65
Blaðsíða 66
Blaðsíða 67
Blaðsíða 68
Blaðsíða 69
Blaðsíða 70
Blaðsíða 71
Blaðsíða 72
Blaðsíða 73
Blaðsíða 74
Blaðsíða 75
Blaðsíða 76
Blaðsíða 77
Blaðsíða 78
Blaðsíða 79
Blaðsíða 80
Blaðsíða 81
Blaðsíða 82
Blaðsíða 83
Blaðsíða 84
Blaðsíða 85
Blaðsíða 86
Blaðsíða 87
Blaðsíða 88
Blaðsíða 89
Blaðsíða 90
Blaðsíða 91
Blaðsíða 92
Blaðsíða 93
Blaðsíða 94
Blaðsíða 95
Blaðsíða 96
Blaðsíða 97
Blaðsíða 98
Blaðsíða 99
Blaðsíða 100
Blaðsíða 101
Blaðsíða 102
Blaðsíða 103
Blaðsíða 104

x

Jökull

Beinir tenglar

Ef þú vilt tengja á þennan titil, vinsamlegast notaðu þessa tengla:

Tengja á þennan titil: Jökull
https://timarit.is/publication/1155

Tengja á þetta tölublað:

Tengja á þessa síðu:

Tengja á þessa grein:

Vinsamlegast ekki tengja beint á myndir eða PDF skjöl á Tímarit.is þar sem slíkar slóðir geta breyst án fyrirvara. Notið slóðirnar hér fyrir ofan til að tengja á vefinn.